Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{k^{2}+1}{k-1}-\frac{k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{k-1}{k-1}.
\frac{\frac{k^{2}+1-k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Since \frac{k^{2}+1}{k-1} and \frac{k\left(k-1\right)}{k-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}+1-k^{2}+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Do the multiplications in k^{2}+1-k\left(k-1\right).
\frac{\frac{1+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Combine like terms in k^{2}+1-k^{2}+k.
\frac{\frac{1+k}{k-1}}{\frac{\left(k-1\right)\left(k+1\right)}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Factor the expressions that are not already factored in \frac{k^{2}-1}{k+1}.
\frac{\frac{1+k}{k-1}}{k-1+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Cancel out k+1 in both numerator and denominator.
\frac{\frac{1+k}{k-1}}{k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Add -1 and 1 to get 0.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Express \frac{\frac{1+k}{k-1}}{k} as a single fraction.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k}{k}+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k}{k}.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k+1}{k}}\right)
Since \frac{k}{k} and \frac{1}{k} have the same denominator, add them by adding their numerators.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2k}{k+1}\right)
Divide 2 by \frac{k+1}{k} by multiplying 2 by the reciprocal of \frac{k+1}{k}.
\frac{-\left(1+k\right)\times 2k}{\left(k-1\right)k\left(k+1\right)}
Multiply \frac{1+k}{\left(k-1\right)k} times -\frac{2k}{k+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{k-1}
Cancel out k\left(k+1\right) in both numerator and denominator.
\frac{\frac{k^{2}+1}{k-1}-\frac{k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{k-1}{k-1}.
\frac{\frac{k^{2}+1-k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Since \frac{k^{2}+1}{k-1} and \frac{k\left(k-1\right)}{k-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}+1-k^{2}+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Do the multiplications in k^{2}+1-k\left(k-1\right).
\frac{\frac{1+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Combine like terms in k^{2}+1-k^{2}+k.
\frac{\frac{1+k}{k-1}}{\frac{\left(k-1\right)\left(k+1\right)}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Factor the expressions that are not already factored in \frac{k^{2}-1}{k+1}.
\frac{\frac{1+k}{k-1}}{k-1+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Cancel out k+1 in both numerator and denominator.
\frac{\frac{1+k}{k-1}}{k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Add -1 and 1 to get 0.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Express \frac{\frac{1+k}{k-1}}{k} as a single fraction.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k}{k}+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k}{k}.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k+1}{k}}\right)
Since \frac{k}{k} and \frac{1}{k} have the same denominator, add them by adding their numerators.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2k}{k+1}\right)
Divide 2 by \frac{k+1}{k} by multiplying 2 by the reciprocal of \frac{k+1}{k}.
\frac{-\left(1+k\right)\times 2k}{\left(k-1\right)k\left(k+1\right)}
Multiply \frac{1+k}{\left(k-1\right)k} times -\frac{2k}{k+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{k-1}
Cancel out k\left(k+1\right) in both numerator and denominator.