Evaluate
-\frac{2}{k-1}
Expand
-\frac{2}{k-1}
Share
Copied to clipboard
\frac{\frac{k^{2}+1}{k-1}-\frac{k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{k-1}{k-1}.
\frac{\frac{k^{2}+1-k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Since \frac{k^{2}+1}{k-1} and \frac{k\left(k-1\right)}{k-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}+1-k^{2}+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Do the multiplications in k^{2}+1-k\left(k-1\right).
\frac{\frac{1+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Combine like terms in k^{2}+1-k^{2}+k.
\frac{\frac{1+k}{k-1}}{\frac{\left(k-1\right)\left(k+1\right)}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Factor the expressions that are not already factored in \frac{k^{2}-1}{k+1}.
\frac{\frac{1+k}{k-1}}{k-1+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Cancel out k+1 in both numerator and denominator.
\frac{\frac{1+k}{k-1}}{k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Add -1 and 1 to get 0.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Express \frac{\frac{1+k}{k-1}}{k} as a single fraction.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k}{k}+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k}{k}.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k+1}{k}}\right)
Since \frac{k}{k} and \frac{1}{k} have the same denominator, add them by adding their numerators.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2k}{k+1}\right)
Divide 2 by \frac{k+1}{k} by multiplying 2 by the reciprocal of \frac{k+1}{k}.
\frac{-\left(1+k\right)\times 2k}{\left(k-1\right)k\left(k+1\right)}
Multiply \frac{1+k}{\left(k-1\right)k} times -\frac{2k}{k+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{k-1}
Cancel out k\left(k+1\right) in both numerator and denominator.
\frac{\frac{k^{2}+1}{k-1}-\frac{k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply k times \frac{k-1}{k-1}.
\frac{\frac{k^{2}+1-k\left(k-1\right)}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Since \frac{k^{2}+1}{k-1} and \frac{k\left(k-1\right)}{k-1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}+1-k^{2}+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Do the multiplications in k^{2}+1-k\left(k-1\right).
\frac{\frac{1+k}{k-1}}{\frac{k^{2}-1}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Combine like terms in k^{2}+1-k^{2}+k.
\frac{\frac{1+k}{k-1}}{\frac{\left(k-1\right)\left(k+1\right)}{k+1}+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Factor the expressions that are not already factored in \frac{k^{2}-1}{k+1}.
\frac{\frac{1+k}{k-1}}{k-1+1}\left(-\frac{2}{1+\frac{1}{k}}\right)
Cancel out k+1 in both numerator and denominator.
\frac{\frac{1+k}{k-1}}{k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Add -1 and 1 to get 0.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{1+\frac{1}{k}}\right)
Express \frac{\frac{1+k}{k-1}}{k} as a single fraction.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k}{k}+\frac{1}{k}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k}{k}.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2}{\frac{k+1}{k}}\right)
Since \frac{k}{k} and \frac{1}{k} have the same denominator, add them by adding their numerators.
\frac{1+k}{\left(k-1\right)k}\left(-\frac{2k}{k+1}\right)
Divide 2 by \frac{k+1}{k} by multiplying 2 by the reciprocal of \frac{k+1}{k}.
\frac{-\left(1+k\right)\times 2k}{\left(k-1\right)k\left(k+1\right)}
Multiply \frac{1+k}{\left(k-1\right)k} times -\frac{2k}{k+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{k-1}
Cancel out k\left(k+1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}