Evaluate
\frac{\sqrt{6}d}{4C}
Differentiate w.r.t. d
\frac{\sqrt{6}}{4C}
Share
Copied to clipboard
\frac{d}{2\times \frac{\sqrt{6}}{3}C}
Express \frac{\frac{d}{2}}{\frac{\sqrt{6}}{3}C} as a single fraction.
\frac{d}{\frac{2\sqrt{6}}{3}C}
Express 2\times \frac{\sqrt{6}}{3} as a single fraction.
\frac{d}{\frac{2\sqrt{6}C}{3}}
Express \frac{2\sqrt{6}}{3}C as a single fraction.
\frac{d\times 3}{2\sqrt{6}C}
Divide d by \frac{2\sqrt{6}C}{3} by multiplying d by the reciprocal of \frac{2\sqrt{6}C}{3}.
\frac{d\times 3\sqrt{6}}{2\left(\sqrt{6}\right)^{2}C}
Rationalize the denominator of \frac{d\times 3}{2\sqrt{6}C} by multiplying numerator and denominator by \sqrt{6}.
\frac{d\times 3\sqrt{6}}{2\times 6C}
The square of \sqrt{6} is 6.
\frac{d\times 3\sqrt{6}}{12C}
Multiply 2 and 6 to get 12.
\frac{\sqrt{6}d}{4C}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}