Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a^{3}-b^{3}\right)\left(a+b\right)}-\frac{1}{b-a}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Multiply \frac{a}{a^{3}-b^{3}} times \frac{a^{2}+b^{2}+ab}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}-\frac{1}{b-a}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Factor \left(a^{3}-b^{3}\right)\left(a+b\right).
\frac{\frac{-a\left(a^{2}+b^{2}+ab\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}-\frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right) and b-a is \left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right). Multiply \frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)} times \frac{-1}{-1}. Multiply \frac{1}{b-a} times \frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}.
\frac{\frac{-a\left(a^{2}+b^{2}+ab\right)-\left(-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Since \frac{-a\left(a^{2}+b^{2}+ab\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)} and \frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a^{3}-ab^{2}-a^{2}b-a^{3}-a^{2}b-ab^{2}-ba^{2}-b^{2}a-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Do the multiplications in -a\left(a^{2}+b^{2}+ab\right)-\left(-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)\right).
\frac{\frac{-2a^{3}-3a^{2}b-3ab^{2}-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Combine like terms in -a^{3}-ab^{2}-a^{2}b-a^{3}-a^{2}b-ab^{2}-ba^{2}-b^{2}a-b^{3}.
\frac{\frac{\left(2a+b\right)\left(-a^{2}-ab-b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Factor the expressions that are not already factored in \frac{-2a^{3}-3a^{2}b-3ab^{2}-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}.
\frac{\frac{-\left(2a+b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Extract the negative sign in -a^{2}-ab-b^{2}.
\frac{\frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Cancel out a^{2}+ab+b^{2} in both numerator and denominator.
\frac{-\left(2a+b\right)\left(a^{2}+2ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(2a+b\right)}
Divide \frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)} by \frac{2a+b}{a^{2}+2ab+b^{2}} by multiplying \frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)} by the reciprocal of \frac{2a+b}{a^{2}+2ab+b^{2}}.
\frac{-\left(a^{2}+2ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)}
Cancel out 2a+b in both numerator and denominator.
\frac{-a^{2}-2ab-b^{2}}{\left(a-b\right)\left(-a-b\right)}
To find the opposite of a^{2}+2ab+b^{2}, find the opposite of each term.
\frac{-a^{2}-2ab-b^{2}}{-a^{2}+b^{2}}
Use the distributive property to multiply a-b by -a-b and combine like terms.
\frac{\left(a+b\right)\left(-a-b\right)}{\left(a-b\right)\left(-a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-a-b\right)\left(-a-b\right)}{\left(a-b\right)\left(-a-b\right)}
Extract the negative sign in a+b.
\frac{-\left(-a-b\right)}{a-b}
Cancel out -a-b in both numerator and denominator.
\frac{a+b}{a-b}
Expand the expression.
\frac{\frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a^{3}-b^{3}\right)\left(a+b\right)}-\frac{1}{b-a}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Multiply \frac{a}{a^{3}-b^{3}} times \frac{a^{2}+b^{2}+ab}{a+b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}-\frac{1}{b-a}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Factor \left(a^{3}-b^{3}\right)\left(a+b\right).
\frac{\frac{-a\left(a^{2}+b^{2}+ab\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}-\frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right) and b-a is \left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right). Multiply \frac{a\left(a^{2}+b^{2}+ab\right)}{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)} times \frac{-1}{-1}. Multiply \frac{1}{b-a} times \frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}.
\frac{\frac{-a\left(a^{2}+b^{2}+ab\right)-\left(-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Since \frac{-a\left(a^{2}+b^{2}+ab\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)} and \frac{-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a^{3}-ab^{2}-a^{2}b-a^{3}-a^{2}b-ab^{2}-ba^{2}-b^{2}a-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Do the multiplications in -a\left(a^{2}+b^{2}+ab\right)-\left(-\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)\right).
\frac{\frac{-2a^{3}-3a^{2}b-3ab^{2}-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Combine like terms in -a^{3}-ab^{2}-a^{2}b-a^{3}-a^{2}b-ab^{2}-ba^{2}-b^{2}a-b^{3}.
\frac{\frac{\left(2a+b\right)\left(-a^{2}-ab-b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Factor the expressions that are not already factored in \frac{-2a^{3}-3a^{2}b-3ab^{2}-b^{3}}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}.
\frac{\frac{-\left(2a+b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Extract the negative sign in -a^{2}-ab-b^{2}.
\frac{\frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)}}{\frac{2a+b}{a^{2}+2ab+b^{2}}}
Cancel out a^{2}+ab+b^{2} in both numerator and denominator.
\frac{-\left(2a+b\right)\left(a^{2}+2ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)\left(2a+b\right)}
Divide \frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)} by \frac{2a+b}{a^{2}+2ab+b^{2}} by multiplying \frac{-\left(2a+b\right)}{\left(a-b\right)\left(-a-b\right)} by the reciprocal of \frac{2a+b}{a^{2}+2ab+b^{2}}.
\frac{-\left(a^{2}+2ab+b^{2}\right)}{\left(a-b\right)\left(-a-b\right)}
Cancel out 2a+b in both numerator and denominator.
\frac{-a^{2}-2ab-b^{2}}{\left(a-b\right)\left(-a-b\right)}
To find the opposite of a^{2}+2ab+b^{2}, find the opposite of each term.
\frac{-a^{2}-2ab-b^{2}}{-a^{2}+b^{2}}
Use the distributive property to multiply a-b by -a-b and combine like terms.
\frac{\left(a+b\right)\left(-a-b\right)}{\left(a-b\right)\left(-a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(-a-b\right)\left(-a-b\right)}{\left(a-b\right)\left(-a-b\right)}
Extract the negative sign in a+b.
\frac{-\left(-a-b\right)}{a-b}
Cancel out -a-b in both numerator and denominator.
\frac{a+b}{a-b}
Expand the expression.