Evaluate
-\frac{51}{32}=-1.59375
Factor
-\frac{51}{32} = -1\frac{19}{32} = -1.59375
Share
Copied to clipboard
\frac{\frac{9}{4}+\frac{8}{4}}{\frac{4}{3}-4}
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{9+8}{4}}{\frac{4}{3}-4}
Since \frac{9}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{4}}{\frac{4}{3}-4}
Add 9 and 8 to get 17.
\frac{\frac{17}{4}}{\frac{4}{3}-\frac{12}{3}}
Convert 4 to fraction \frac{12}{3}.
\frac{\frac{17}{4}}{\frac{4-12}{3}}
Since \frac{4}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{17}{4}}{-\frac{8}{3}}
Subtract 12 from 4 to get -8.
\frac{17}{4}\left(-\frac{3}{8}\right)
Divide \frac{17}{4} by -\frac{8}{3} by multiplying \frac{17}{4} by the reciprocal of -\frac{8}{3}.
\frac{17\left(-3\right)}{4\times 8}
Multiply \frac{17}{4} times -\frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-51}{32}
Do the multiplications in the fraction \frac{17\left(-3\right)}{4\times 8}.
-\frac{51}{32}
Fraction \frac{-51}{32} can be rewritten as -\frac{51}{32} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}