Evaluate
\frac{65}{21}\approx 3.095238095
Factor
\frac{5 \cdot 13}{3 \cdot 7} = 3\frac{2}{21} = 3.0952380952380953
Share
Copied to clipboard
\frac{\frac{8}{7}-\frac{1}{9}}{\frac{1}{3}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{\frac{72}{63}-\frac{7}{63}}{\frac{1}{3}}
Least common multiple of 7 and 9 is 63. Convert \frac{8}{7} and \frac{1}{9} to fractions with denominator 63.
\frac{\frac{72-7}{63}}{\frac{1}{3}}
Since \frac{72}{63} and \frac{7}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{65}{63}}{\frac{1}{3}}
Subtract 7 from 72 to get 65.
\frac{65}{63}\times 3
Divide \frac{65}{63} by \frac{1}{3} by multiplying \frac{65}{63} by the reciprocal of \frac{1}{3}.
\frac{65\times 3}{63}
Express \frac{65}{63}\times 3 as a single fraction.
\frac{195}{63}
Multiply 65 and 3 to get 195.
\frac{65}{21}
Reduce the fraction \frac{195}{63} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}