Evaluate
\frac{119}{135}\approx 0.881481481
Factor
\frac{7 \cdot 17}{3 ^ {3} \cdot 5} = 0.8814814814814815
Share
Copied to clipboard
\frac{\frac{24}{15}+\frac{10}{15}}{2+\frac{4}{7}}
Least common multiple of 5 and 3 is 15. Convert \frac{8}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{\frac{24+10}{15}}{2+\frac{4}{7}}
Since \frac{24}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{34}{15}}{2+\frac{4}{7}}
Add 24 and 10 to get 34.
\frac{\frac{34}{15}}{\frac{14}{7}+\frac{4}{7}}
Convert 2 to fraction \frac{14}{7}.
\frac{\frac{34}{15}}{\frac{14+4}{7}}
Since \frac{14}{7} and \frac{4}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{34}{15}}{\frac{18}{7}}
Add 14 and 4 to get 18.
\frac{34}{15}\times \frac{7}{18}
Divide \frac{34}{15} by \frac{18}{7} by multiplying \frac{34}{15} by the reciprocal of \frac{18}{7}.
\frac{34\times 7}{15\times 18}
Multiply \frac{34}{15} times \frac{7}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{238}{270}
Do the multiplications in the fraction \frac{34\times 7}{15\times 18}.
\frac{119}{135}
Reduce the fraction \frac{238}{270} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}