Evaluate
-7
Factor
-7
Share
Copied to clipboard
\frac{\frac{232}{1073}-\frac{148}{1073}}{\frac{1}{29}-\frac{2}{37}}-3
Least common multiple of 37 and 29 is 1073. Convert \frac{8}{37} and \frac{4}{29} to fractions with denominator 1073.
\frac{\frac{232-148}{1073}}{\frac{1}{29}-\frac{2}{37}}-3
Since \frac{232}{1073} and \frac{148}{1073} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{84}{1073}}{\frac{1}{29}-\frac{2}{37}}-3
Subtract 148 from 232 to get 84.
\frac{\frac{84}{1073}}{\frac{37}{1073}-\frac{58}{1073}}-3
Least common multiple of 29 and 37 is 1073. Convert \frac{1}{29} and \frac{2}{37} to fractions with denominator 1073.
\frac{\frac{84}{1073}}{\frac{37-58}{1073}}-3
Since \frac{37}{1073} and \frac{58}{1073} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{84}{1073}}{-\frac{21}{1073}}-3
Subtract 58 from 37 to get -21.
\frac{84}{1073}\left(-\frac{1073}{21}\right)-3
Divide \frac{84}{1073} by -\frac{21}{1073} by multiplying \frac{84}{1073} by the reciprocal of -\frac{21}{1073}.
\frac{84\left(-1073\right)}{1073\times 21}-3
Multiply \frac{84}{1073} times -\frac{1073}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{-90132}{22533}-3
Do the multiplications in the fraction \frac{84\left(-1073\right)}{1073\times 21}.
-4-3
Divide -90132 by 22533 to get -4.
-7
Subtract 3 from -4 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}