Evaluate
\frac{162}{43}\approx 3.76744186
Factor
\frac{2 \cdot 3 ^ {4}}{43} = 3\frac{33}{43} = 3.7674418604651163
Share
Copied to clipboard
\frac{\frac{4}{5}}{\frac{1}{5}+\frac{1}{81}}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{4}{5}}{\frac{81}{405}+\frac{5}{405}}
Least common multiple of 5 and 81 is 405. Convert \frac{1}{5} and \frac{1}{81} to fractions with denominator 405.
\frac{\frac{4}{5}}{\frac{81+5}{405}}
Since \frac{81}{405} and \frac{5}{405} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{5}}{\frac{86}{405}}
Add 81 and 5 to get 86.
\frac{4}{5}\times \frac{405}{86}
Divide \frac{4}{5} by \frac{86}{405} by multiplying \frac{4}{5} by the reciprocal of \frac{86}{405}.
\frac{4\times 405}{5\times 86}
Multiply \frac{4}{5} times \frac{405}{86} by multiplying numerator times numerator and denominator times denominator.
\frac{1620}{430}
Do the multiplications in the fraction \frac{4\times 405}{5\times 86}.
\frac{162}{43}
Reduce the fraction \frac{1620}{430} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}