Evaluate
\frac{49x^{2}+18y}{49x^{2}+12y}
Expand
\frac{49x^{2}+18y}{49x^{2}+12y}
Share
Copied to clipboard
\frac{\frac{7x\times 7x}{21xy}+\frac{6\times 3y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3y and 7x is 21xy. Multiply \frac{7x}{3y} times \frac{7x}{7x}. Multiply \frac{6}{7x} times \frac{3y}{3y}.
\frac{\frac{7x\times 7x+6\times 3y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
Since \frac{7x\times 7x}{21xy} and \frac{6\times 3y}{21xy} have the same denominator, add them by adding their numerators.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
Do the multiplications in 7x\times 7x+6\times 3y.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x\times 7x}{21xy}+\frac{4\times 3y}{21xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3y and 7x is 21xy. Multiply \frac{7x}{3y} times \frac{7x}{7x}. Multiply \frac{4}{7x} times \frac{3y}{3y}.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x\times 7x+4\times 3y}{21xy}}
Since \frac{7x\times 7x}{21xy} and \frac{4\times 3y}{21xy} have the same denominator, add them by adding their numerators.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{49x^{2}+12y}{21xy}}
Do the multiplications in 7x\times 7x+4\times 3y.
\frac{\left(49x^{2}+18y\right)\times 21xy}{21xy\left(49x^{2}+12y\right)}
Divide \frac{49x^{2}+18y}{21xy} by \frac{49x^{2}+12y}{21xy} by multiplying \frac{49x^{2}+18y}{21xy} by the reciprocal of \frac{49x^{2}+12y}{21xy}.
\frac{49x^{2}+18y}{49x^{2}+12y}
Cancel out 21xy in both numerator and denominator.
\frac{\frac{7x\times 7x}{21xy}+\frac{6\times 3y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3y and 7x is 21xy. Multiply \frac{7x}{3y} times \frac{7x}{7x}. Multiply \frac{6}{7x} times \frac{3y}{3y}.
\frac{\frac{7x\times 7x+6\times 3y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
Since \frac{7x\times 7x}{21xy} and \frac{6\times 3y}{21xy} have the same denominator, add them by adding their numerators.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x}{3y}+\frac{4}{7x}}
Do the multiplications in 7x\times 7x+6\times 3y.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x\times 7x}{21xy}+\frac{4\times 3y}{21xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3y and 7x is 21xy. Multiply \frac{7x}{3y} times \frac{7x}{7x}. Multiply \frac{4}{7x} times \frac{3y}{3y}.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{7x\times 7x+4\times 3y}{21xy}}
Since \frac{7x\times 7x}{21xy} and \frac{4\times 3y}{21xy} have the same denominator, add them by adding their numerators.
\frac{\frac{49x^{2}+18y}{21xy}}{\frac{49x^{2}+12y}{21xy}}
Do the multiplications in 7x\times 7x+4\times 3y.
\frac{\left(49x^{2}+18y\right)\times 21xy}{21xy\left(49x^{2}+12y\right)}
Divide \frac{49x^{2}+18y}{21xy} by \frac{49x^{2}+12y}{21xy} by multiplying \frac{49x^{2}+18y}{21xy} by the reciprocal of \frac{49x^{2}+12y}{21xy}.
\frac{49x^{2}+18y}{49x^{2}+12y}
Cancel out 21xy in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}