Evaluate
\frac{7-b}{2b+9}
Expand
-\frac{b-7}{2b+9}
Share
Copied to clipboard
\frac{\frac{7\left(b+9\right)}{b\left(b+9\right)}-\frac{16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and b+9 is b\left(b+9\right). Multiply \frac{7}{b} times \frac{b+9}{b+9}. Multiply \frac{16}{b+9} times \frac{b}{b}.
\frac{\frac{7\left(b+9\right)-16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Since \frac{7\left(b+9\right)}{b\left(b+9\right)} and \frac{16b}{b\left(b+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7b+63-16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Do the multiplications in 7\left(b+9\right)-16b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Combine like terms in 7b+63-16b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9\left(b+9\right)}{b\left(b+9\right)}+\frac{9b}{b\left(b+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and b+9 is b\left(b+9\right). Multiply \frac{9}{b} times \frac{b+9}{b+9}. Multiply \frac{9}{b+9} times \frac{b}{b}.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9\left(b+9\right)+9b}{b\left(b+9\right)}}
Since \frac{9\left(b+9\right)}{b\left(b+9\right)} and \frac{9b}{b\left(b+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9b+81+9b}{b\left(b+9\right)}}
Do the multiplications in 9\left(b+9\right)+9b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{18b+81}{b\left(b+9\right)}}
Combine like terms in 9b+81+9b.
\frac{\left(-9b+63\right)b\left(b+9\right)}{b\left(b+9\right)\left(18b+81\right)}
Divide \frac{-9b+63}{b\left(b+9\right)} by \frac{18b+81}{b\left(b+9\right)} by multiplying \frac{-9b+63}{b\left(b+9\right)} by the reciprocal of \frac{18b+81}{b\left(b+9\right)}.
\frac{-9b+63}{18b+81}
Cancel out b\left(b+9\right) in both numerator and denominator.
\frac{9\left(-b+7\right)}{9\left(2b+9\right)}
Factor the expressions that are not already factored.
\frac{-b+7}{2b+9}
Cancel out 9 in both numerator and denominator.
\frac{\frac{7\left(b+9\right)}{b\left(b+9\right)}-\frac{16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and b+9 is b\left(b+9\right). Multiply \frac{7}{b} times \frac{b+9}{b+9}. Multiply \frac{16}{b+9} times \frac{b}{b}.
\frac{\frac{7\left(b+9\right)-16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Since \frac{7\left(b+9\right)}{b\left(b+9\right)} and \frac{16b}{b\left(b+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7b+63-16b}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Do the multiplications in 7\left(b+9\right)-16b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9}{b}+\frac{9}{b+9}}
Combine like terms in 7b+63-16b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9\left(b+9\right)}{b\left(b+9\right)}+\frac{9b}{b\left(b+9\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and b+9 is b\left(b+9\right). Multiply \frac{9}{b} times \frac{b+9}{b+9}. Multiply \frac{9}{b+9} times \frac{b}{b}.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9\left(b+9\right)+9b}{b\left(b+9\right)}}
Since \frac{9\left(b+9\right)}{b\left(b+9\right)} and \frac{9b}{b\left(b+9\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{9b+81+9b}{b\left(b+9\right)}}
Do the multiplications in 9\left(b+9\right)+9b.
\frac{\frac{-9b+63}{b\left(b+9\right)}}{\frac{18b+81}{b\left(b+9\right)}}
Combine like terms in 9b+81+9b.
\frac{\left(-9b+63\right)b\left(b+9\right)}{b\left(b+9\right)\left(18b+81\right)}
Divide \frac{-9b+63}{b\left(b+9\right)} by \frac{18b+81}{b\left(b+9\right)} by multiplying \frac{-9b+63}{b\left(b+9\right)} by the reciprocal of \frac{18b+81}{b\left(b+9\right)}.
\frac{-9b+63}{18b+81}
Cancel out b\left(b+9\right) in both numerator and denominator.
\frac{9\left(-b+7\right)}{9\left(2b+9\right)}
Factor the expressions that are not already factored.
\frac{-b+7}{2b+9}
Cancel out 9 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}