Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{35}{20}+\frac{28}{20}}{2-\frac{7}{4}\times \frac{7}{2}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Least common multiple of 4 and 5 is 20. Convert \frac{7}{4} and \frac{7}{5} to fractions with denominator 20.
\frac{\frac{35+28}{20}}{2-\frac{7}{4}\times \frac{7}{2}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Since \frac{35}{20} and \frac{28}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{63}{20}}{2-\frac{7}{4}\times \frac{7}{2}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Add 35 and 28 to get 63.
\frac{\frac{63}{20}}{2-\frac{7\times 7}{4\times 2}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Multiply \frac{7}{4} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{63}{20}}{2-\frac{49}{8}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Do the multiplications in the fraction \frac{7\times 7}{4\times 2}.
\frac{\frac{63}{20}}{\frac{16}{8}-\frac{49}{8}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Convert 2 to fraction \frac{16}{8}.
\frac{\frac{63}{20}}{\frac{16-49}{8}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Since \frac{16}{8} and \frac{49}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{63}{20}}{-\frac{33}{8}}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Subtract 49 from 16 to get -33.
\frac{63}{20}\left(-\frac{8}{33}\right)+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Divide \frac{63}{20} by -\frac{33}{8} by multiplying \frac{63}{20} by the reciprocal of -\frac{33}{8}.
\frac{63\left(-8\right)}{20\times 33}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Multiply \frac{63}{20} times -\frac{8}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{-504}{660}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Do the multiplications in the fraction \frac{63\left(-8\right)}{20\times 33}.
-\frac{42}{55}+\frac{3+2\times \frac{7}{8}}{5-\frac{2}{3}}
Reduce the fraction \frac{-504}{660} to lowest terms by extracting and canceling out 12.
-\frac{42}{55}+\frac{3+\frac{2\times 7}{8}}{5-\frac{2}{3}}
Express 2\times \frac{7}{8} as a single fraction.
-\frac{42}{55}+\frac{3+\frac{14}{8}}{5-\frac{2}{3}}
Multiply 2 and 7 to get 14.
-\frac{42}{55}+\frac{3+\frac{7}{4}}{5-\frac{2}{3}}
Reduce the fraction \frac{14}{8} to lowest terms by extracting and canceling out 2.
-\frac{42}{55}+\frac{\frac{12}{4}+\frac{7}{4}}{5-\frac{2}{3}}
Convert 3 to fraction \frac{12}{4}.
-\frac{42}{55}+\frac{\frac{12+7}{4}}{5-\frac{2}{3}}
Since \frac{12}{4} and \frac{7}{4} have the same denominator, add them by adding their numerators.
-\frac{42}{55}+\frac{\frac{19}{4}}{5-\frac{2}{3}}
Add 12 and 7 to get 19.
-\frac{42}{55}+\frac{\frac{19}{4}}{\frac{15}{3}-\frac{2}{3}}
Convert 5 to fraction \frac{15}{3}.
-\frac{42}{55}+\frac{\frac{19}{4}}{\frac{15-2}{3}}
Since \frac{15}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{42}{55}+\frac{\frac{19}{4}}{\frac{13}{3}}
Subtract 2 from 15 to get 13.
-\frac{42}{55}+\frac{19}{4}\times \frac{3}{13}
Divide \frac{19}{4} by \frac{13}{3} by multiplying \frac{19}{4} by the reciprocal of \frac{13}{3}.
-\frac{42}{55}+\frac{19\times 3}{4\times 13}
Multiply \frac{19}{4} times \frac{3}{13} by multiplying numerator times numerator and denominator times denominator.
-\frac{42}{55}+\frac{57}{52}
Do the multiplications in the fraction \frac{19\times 3}{4\times 13}.
-\frac{2184}{2860}+\frac{3135}{2860}
Least common multiple of 55 and 52 is 2860. Convert -\frac{42}{55} and \frac{57}{52} to fractions with denominator 2860.
\frac{-2184+3135}{2860}
Since -\frac{2184}{2860} and \frac{3135}{2860} have the same denominator, add them by adding their numerators.
\frac{951}{2860}
Add -2184 and 3135 to get 951.