Evaluate
\frac{89}{4}=22.25
Factor
\frac{89}{2 ^ {2}} = 22\frac{1}{4} = 22.25
Share
Copied to clipboard
\frac{\frac{7}{20}-\frac{6}{20}+\frac{4}{9}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Least common multiple of 20 and 10 is 20. Convert \frac{7}{20} and \frac{3}{10} to fractions with denominator 20.
\frac{\frac{7-6}{20}+\frac{4}{9}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Since \frac{7}{20} and \frac{6}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{20}+\frac{4}{9}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Subtract 6 from 7 to get 1.
\frac{\frac{9}{180}+\frac{80}{180}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Least common multiple of 20 and 9 is 180. Convert \frac{1}{20} and \frac{4}{9} to fractions with denominator 180.
\frac{\frac{9+80}{180}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Since \frac{9}{180} and \frac{80}{180} have the same denominator, add them by adding their numerators.
\frac{\frac{89}{180}}{\left(\frac{7}{20}-\frac{3}{10}\right)\times \frac{4}{9}}
Add 9 and 80 to get 89.
\frac{\frac{89}{180}}{\left(\frac{7}{20}-\frac{6}{20}\right)\times \frac{4}{9}}
Least common multiple of 20 and 10 is 20. Convert \frac{7}{20} and \frac{3}{10} to fractions with denominator 20.
\frac{\frac{89}{180}}{\frac{7-6}{20}\times \frac{4}{9}}
Since \frac{7}{20} and \frac{6}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{89}{180}}{\frac{1}{20}\times \frac{4}{9}}
Subtract 6 from 7 to get 1.
\frac{\frac{89}{180}}{\frac{1\times 4}{20\times 9}}
Multiply \frac{1}{20} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{89}{180}}{\frac{4}{180}}
Do the multiplications in the fraction \frac{1\times 4}{20\times 9}.
\frac{\frac{89}{180}}{\frac{1}{45}}
Reduce the fraction \frac{4}{180} to lowest terms by extracting and canceling out 4.
\frac{89}{180}\times 45
Divide \frac{89}{180} by \frac{1}{45} by multiplying \frac{89}{180} by the reciprocal of \frac{1}{45}.
\frac{89\times 45}{180}
Express \frac{89}{180}\times 45 as a single fraction.
\frac{4005}{180}
Multiply 89 and 45 to get 4005.
\frac{89}{4}
Reduce the fraction \frac{4005}{180} to lowest terms by extracting and canceling out 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}