Evaluate
\frac{191}{300}\approx 0.636666667
Factor
\frac{191}{3 \cdot 2 ^ {2} \cdot 5 ^ {2}} = 0.6366666666666667
Share
Copied to clipboard
\frac{\frac{7}{18}\times \frac{9}{2}+0.16}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Convert decimal number 4.5 to fraction \frac{45}{10}. Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{7\times 9}{18\times 2}+0.16}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Multiply \frac{7}{18} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{63}{36}+0.16}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Do the multiplications in the fraction \frac{7\times 9}{18\times 2}.
\frac{\frac{7}{4}+0.16}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Reduce the fraction \frac{63}{36} to lowest terms by extracting and canceling out 9.
\frac{\frac{7}{4}+\frac{4}{25}}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Convert decimal number 0.16 to fraction \frac{16}{100}. Reduce the fraction \frac{16}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{175}{100}+\frac{16}{100}}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Least common multiple of 4 and 25 is 100. Convert \frac{7}{4} and \frac{4}{25} to fractions with denominator 100.
\frac{\frac{175+16}{100}}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Since \frac{175}{100} and \frac{16}{100} have the same denominator, add them by adding their numerators.
\frac{\frac{191}{100}}{\frac{13\times 3+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Add 175 and 16 to get 191.
\frac{\frac{191}{100}}{\frac{39+1}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Multiply 13 and 3 to get 39.
\frac{\frac{191}{100}}{\frac{40}{3}-3.75\times 3.2}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Add 39 and 1 to get 40.
\frac{\frac{191}{100}}{\frac{40}{3}-12}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Multiply 3.75 and 3.2 to get 12.
\frac{\frac{191}{100}}{\frac{40}{3}-\frac{36}{3}}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Convert 12 to fraction \frac{36}{3}.
\frac{\frac{191}{100}}{\frac{40-36}{3}}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Since \frac{40}{3} and \frac{36}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{191}{100}}{\frac{4}{3}}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Subtract 36 from 40 to get 4.
\frac{191}{100}\times \frac{3}{4}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Divide \frac{191}{100} by \frac{4}{3} by multiplying \frac{191}{100} by the reciprocal of \frac{4}{3}.
\frac{191\times 3}{100\times 4}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Multiply \frac{191}{100} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{573}{400}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Do the multiplications in the fraction \frac{191\times 3}{100\times 4}.
\frac{573}{400}\left(\frac{5}{15}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Least common multiple of 3 and 15 is 15. Convert \frac{1}{3} and \frac{1}{15} to fractions with denominator 15.
\frac{573}{400}\left(\frac{5+1}{15}+\frac{1}{35}+\frac{1}{63}\right)
Since \frac{5}{15} and \frac{1}{15} have the same denominator, add them by adding their numerators.
\frac{573}{400}\left(\frac{6}{15}+\frac{1}{35}+\frac{1}{63}\right)
Add 5 and 1 to get 6.
\frac{573}{400}\left(\frac{2}{5}+\frac{1}{35}+\frac{1}{63}\right)
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
\frac{573}{400}\left(\frac{14}{35}+\frac{1}{35}+\frac{1}{63}\right)
Least common multiple of 5 and 35 is 35. Convert \frac{2}{5} and \frac{1}{35} to fractions with denominator 35.
\frac{573}{400}\left(\frac{14+1}{35}+\frac{1}{63}\right)
Since \frac{14}{35} and \frac{1}{35} have the same denominator, add them by adding their numerators.
\frac{573}{400}\left(\frac{15}{35}+\frac{1}{63}\right)
Add 14 and 1 to get 15.
\frac{573}{400}\left(\frac{3}{7}+\frac{1}{63}\right)
Reduce the fraction \frac{15}{35} to lowest terms by extracting and canceling out 5.
\frac{573}{400}\left(\frac{27}{63}+\frac{1}{63}\right)
Least common multiple of 7 and 63 is 63. Convert \frac{3}{7} and \frac{1}{63} to fractions with denominator 63.
\frac{573}{400}\times \frac{27+1}{63}
Since \frac{27}{63} and \frac{1}{63} have the same denominator, add them by adding their numerators.
\frac{573}{400}\times \frac{28}{63}
Add 27 and 1 to get 28.
\frac{573}{400}\times \frac{4}{9}
Reduce the fraction \frac{28}{63} to lowest terms by extracting and canceling out 7.
\frac{573\times 4}{400\times 9}
Multiply \frac{573}{400} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2292}{3600}
Do the multiplications in the fraction \frac{573\times 4}{400\times 9}.
\frac{191}{300}
Reduce the fraction \frac{2292}{3600} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}