Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\left(\frac{7}{18}\times \frac{4\times 2+1}{2}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Divide \frac{\frac{7}{18}\times \frac{4\times 2+1}{2}+\frac{1}{6}}{\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}} by \frac{2\times 8+7}{8} by multiplying \frac{\frac{7}{18}\times \frac{4\times 2+1}{2}+\frac{1}{6}}{\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}} by the reciprocal of \frac{2\times 8+7}{8}.
\frac{\left(\frac{7}{18}\times \frac{8+1}{2}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Multiply 4 and 2 to get 8.
\frac{\left(\frac{7}{18}\times \frac{9}{2}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Add 8 and 1 to get 9.
\frac{\left(\frac{7\times 9}{18\times 2}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Multiply \frac{7}{18} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{63}{36}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Do the multiplications in the fraction \frac{7\times 9}{18\times 2}.
\frac{\left(\frac{7}{4}+\frac{1}{6}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Reduce the fraction \frac{63}{36} to lowest terms by extracting and canceling out 9.
\frac{\left(\frac{21}{12}+\frac{2}{12}\right)\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Least common multiple of 4 and 6 is 12. Convert \frac{7}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{\frac{21+2}{12}\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Since \frac{21}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{12}\times 8}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Add 21 and 2 to get 23.
\frac{\frac{23\times 8}{12}}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Express \frac{23}{12}\times 8 as a single fraction.
\frac{\frac{184}{12}}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Multiply 23 and 8 to get 184.
\frac{\frac{46}{3}}{\left(\frac{13\times 3+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Reduce the fraction \frac{184}{12} to lowest terms by extracting and canceling out 4.
\frac{\frac{46}{3}}{\left(\frac{39+1}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Multiply 13 and 3 to get 39.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{\frac{3\times 4+3}{4}}{\frac{5}{16}}\right)\left(2\times 8+7\right)}
Add 39 and 1 to get 40.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{\left(3\times 4+3\right)\times 16}{4\times 5}\right)\left(2\times 8+7\right)}
Divide \frac{3\times 4+3}{4} by \frac{5}{16} by multiplying \frac{3\times 4+3}{4} by the reciprocal of \frac{5}{16}.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{4\left(3+3\times 4\right)}{5}\right)\left(2\times 8+7\right)}
Cancel out 4 in both numerator and denominator.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{4\left(3+12\right)}{5}\right)\left(2\times 8+7\right)}
Multiply 3 and 4 to get 12.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{4\times 15}{5}\right)\left(2\times 8+7\right)}
Add 3 and 12 to get 15.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{60}{5}\right)\left(2\times 8+7\right)}
Multiply 4 and 15 to get 60.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-12\right)\left(2\times 8+7\right)}
Divide 60 by 5 to get 12.
\frac{\frac{46}{3}}{\left(\frac{40}{3}-\frac{36}{3}\right)\left(2\times 8+7\right)}
Convert 12 to fraction \frac{36}{3}.
\frac{\frac{46}{3}}{\frac{40-36}{3}\left(2\times 8+7\right)}
Since \frac{40}{3} and \frac{36}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{46}{3}}{\frac{4}{3}\left(2\times 8+7\right)}
Subtract 36 from 40 to get 4.
\frac{\frac{46}{3}}{\frac{4}{3}\left(16+7\right)}
Multiply 2 and 8 to get 16.
\frac{\frac{46}{3}}{\frac{4}{3}\times 23}
Add 16 and 7 to get 23.
\frac{\frac{46}{3}}{\frac{4\times 23}{3}}
Express \frac{4}{3}\times 23 as a single fraction.
\frac{\frac{46}{3}}{\frac{92}{3}}
Multiply 4 and 23 to get 92.
\frac{46}{3}\times \frac{3}{92}
Divide \frac{46}{3} by \frac{92}{3} by multiplying \frac{46}{3} by the reciprocal of \frac{92}{3}.
\frac{46\times 3}{3\times 92}
Multiply \frac{46}{3} times \frac{3}{92} by multiplying numerator times numerator and denominator times denominator.
\frac{46}{92}
Cancel out 3 in both numerator and denominator.
\frac{1}{2}
Reduce the fraction \frac{46}{92} to lowest terms by extracting and canceling out 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}