Evaluate
\frac{\sqrt{5}}{2}\approx 1.118033989
Share
Copied to clipboard
\frac{\frac{15}{8}\sqrt{3}}{\frac{3\sqrt{15}}{4}}
Combine \frac{7\sqrt{3}}{8} and \sqrt{3} to get \frac{15}{8}\sqrt{3}.
\frac{\frac{15}{8}\sqrt{3}\times 4}{3\sqrt{15}}
Divide \frac{15}{8}\sqrt{3} by \frac{3\sqrt{15}}{4} by multiplying \frac{15}{8}\sqrt{3} by the reciprocal of \frac{3\sqrt{15}}{4}.
\frac{\frac{15}{8}\sqrt{3}\times 4\sqrt{15}}{3\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\frac{15}{8}\sqrt{3}\times 4}{3\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\frac{15}{8}\sqrt{3}\times 4\sqrt{15}}{3\times 15}
The square of \sqrt{15} is 15.
\frac{\frac{15\times 4}{8}\sqrt{3}\sqrt{15}}{3\times 15}
Express \frac{15}{8}\times 4 as a single fraction.
\frac{\frac{60}{8}\sqrt{3}\sqrt{15}}{3\times 15}
Multiply 15 and 4 to get 60.
\frac{\frac{15}{2}\sqrt{3}\sqrt{15}}{3\times 15}
Reduce the fraction \frac{60}{8} to lowest terms by extracting and canceling out 4.
\frac{\frac{15}{2}\sqrt{3}\sqrt{3}\sqrt{5}}{3\times 15}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{\frac{15}{2}\times 3\sqrt{5}}{3\times 15}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\frac{15}{2}\times 3\sqrt{5}}{45}
Multiply 3 and 15 to get 45.
\frac{\frac{15\times 3}{2}\sqrt{5}}{45}
Express \frac{15}{2}\times 3 as a single fraction.
\frac{\frac{45}{2}\sqrt{5}}{45}
Multiply 15 and 3 to get 45.
\frac{1}{2}\sqrt{5}
Divide \frac{45}{2}\sqrt{5} by 45 to get \frac{1}{2}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}