Evaluate
\frac{8}{33}\approx 0.242424242
Factor
\frac{2 ^ {3}}{3 \cdot 11} = 0.24242424242424243
Share
Copied to clipboard
\frac{\frac{\frac{6\times 2}{7\times 3}}{\frac{9}{14}}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Multiply \frac{6}{7} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{12}{21}}{\frac{9}{14}}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Do the multiplications in the fraction \frac{6\times 2}{7\times 3}.
\frac{\frac{\frac{4}{7}}{\frac{9}{14}}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Reduce the fraction \frac{12}{21} to lowest terms by extracting and canceling out 3.
\frac{\frac{4}{7}\times \frac{14}{9}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Divide \frac{4}{7} by \frac{9}{14} by multiplying \frac{4}{7} by the reciprocal of \frac{9}{14}.
\frac{\frac{4\times 14}{7\times 9}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Multiply \frac{4}{7} times \frac{14}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{56}{63}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Do the multiplications in the fraction \frac{4\times 14}{7\times 9}.
\frac{\frac{8}{9}}{\frac{1\times 3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Reduce the fraction \frac{56}{63} to lowest terms by extracting and canceling out 7.
\frac{\frac{8}{9}}{\frac{3+1}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Multiply 1 and 3 to get 3.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{4\times 2+1}{2}-\frac{1\times 4+3}{4}\right)}
Add 3 and 1 to get 4.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{8+1}{2}-\frac{1\times 4+3}{4}\right)}
Multiply 4 and 2 to get 8.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{9}{2}-\frac{1\times 4+3}{4}\right)}
Add 8 and 1 to get 9.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{9}{2}-\frac{4+3}{4}\right)}
Multiply 1 and 4 to get 4.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{9}{2}-\frac{7}{4}\right)}
Add 4 and 3 to get 7.
\frac{\frac{8}{9}}{\frac{4}{3}\left(\frac{18}{4}-\frac{7}{4}\right)}
Least common multiple of 2 and 4 is 4. Convert \frac{9}{2} and \frac{7}{4} to fractions with denominator 4.
\frac{\frac{8}{9}}{\frac{4}{3}\times \frac{18-7}{4}}
Since \frac{18}{4} and \frac{7}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8}{9}}{\frac{4}{3}\times \frac{11}{4}}
Subtract 7 from 18 to get 11.
\frac{\frac{8}{9}}{\frac{4\times 11}{3\times 4}}
Multiply \frac{4}{3} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{9}}{\frac{11}{3}}
Cancel out 4 in both numerator and denominator.
\frac{8}{9}\times \frac{3}{11}
Divide \frac{8}{9} by \frac{11}{3} by multiplying \frac{8}{9} by the reciprocal of \frac{11}{3}.
\frac{8\times 3}{9\times 11}
Multiply \frac{8}{9} times \frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{24}{99}
Do the multiplications in the fraction \frac{8\times 3}{9\times 11}.
\frac{8}{33}
Reduce the fraction \frac{24}{99} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}