Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6}{\left(3\sqrt{17}+27\right)\times 8}
Express \frac{\frac{6}{3\sqrt{17}+27}}{8} as a single fraction.
\frac{6}{24\sqrt{17}+216}
Use the distributive property to multiply 3\sqrt{17}+27 by 8.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right)}
Rationalize the denominator of \frac{6}{24\sqrt{17}+216} by multiplying numerator and denominator by 24\sqrt{17}-216.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}\right)^{2}-216^{2}}
Consider \left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{24^{2}\left(\sqrt{17}\right)^{2}-216^{2}}
Expand \left(24\sqrt{17}\right)^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{576\left(\sqrt{17}\right)^{2}-216^{2}}
Calculate 24 to the power of 2 and get 576.
\frac{6\left(24\sqrt{17}-216\right)}{576\times 17-216^{2}}
The square of \sqrt{17} is 17.
\frac{6\left(24\sqrt{17}-216\right)}{9792-216^{2}}
Multiply 576 and 17 to get 9792.
\frac{6\left(24\sqrt{17}-216\right)}{9792-46656}
Calculate 216 to the power of 2 and get 46656.
\frac{6\left(24\sqrt{17}-216\right)}{-36864}
Subtract 46656 from 9792 to get -36864.
-\frac{1}{6144}\left(24\sqrt{17}-216\right)
Divide 6\left(24\sqrt{17}-216\right) by -36864 to get -\frac{1}{6144}\left(24\sqrt{17}-216\right).
-\frac{1}{6144}\times 24\sqrt{17}-\frac{1}{6144}\left(-216\right)
Use the distributive property to multiply -\frac{1}{6144} by 24\sqrt{17}-216.
\frac{-24}{6144}\sqrt{17}-\frac{1}{6144}\left(-216\right)
Express -\frac{1}{6144}\times 24 as a single fraction.
-\frac{1}{256}\sqrt{17}-\frac{1}{6144}\left(-216\right)
Reduce the fraction \frac{-24}{6144} to lowest terms by extracting and canceling out 24.
-\frac{1}{256}\sqrt{17}+\frac{-\left(-216\right)}{6144}
Express -\frac{1}{6144}\left(-216\right) as a single fraction.
-\frac{1}{256}\sqrt{17}+\frac{216}{6144}
Multiply -1 and -216 to get 216.
-\frac{1}{256}\sqrt{17}+\frac{9}{256}
Reduce the fraction \frac{216}{6144} to lowest terms by extracting and canceling out 24.