Solve for x
x=2
Graph
Share
Copied to clipboard
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{4}{11}+\frac{2}{3}-\frac{5}{22}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{12}{33}+\frac{22}{33}-\frac{5}{22}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Least common multiple of 11 and 3 is 33. Convert \frac{4}{11} and \frac{2}{3} to fractions with denominator 33.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{12+22}{33}-\frac{5}{22}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Since \frac{12}{33} and \frac{22}{33} have the same denominator, add them by adding their numerators.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{34}{33}-\frac{5}{22}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Add 12 and 22 to get 34.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{68}{66}-\frac{15}{66}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Least common multiple of 33 and 22 is 66. Convert \frac{34}{33} and \frac{5}{22} to fractions with denominator 66.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{68-15}{66}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Since \frac{68}{66} and \frac{15}{66} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x\times \frac{\frac{\frac{53}{33}}{\frac{53}{66}}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Subtract 15 from 68 to get 53.
\frac{5}{12}x\times \frac{\frac{53}{33}\times \frac{66}{53}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Divide \frac{53}{33} by \frac{53}{66} by multiplying \frac{53}{33} by the reciprocal of \frac{53}{66}.
\frac{5}{12}x\times \frac{\frac{53\times 66}{33\times 53}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Multiply \frac{53}{33} times \frac{66}{53} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{12}x\times \frac{\frac{66}{33}}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Cancel out 53 in both numerator and denominator.
\frac{5}{12}x\times \frac{2}{\sqrt{\left(\frac{7}{8}+\frac{2}{5}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Divide 66 by 33 to get 2.
\frac{5}{12}x\times \frac{2}{\sqrt{\left(\frac{35}{40}+\frac{16}{40}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Least common multiple of 8 and 5 is 40. Convert \frac{7}{8} and \frac{2}{5} to fractions with denominator 40.
\frac{5}{12}x\times \frac{2}{\sqrt{\left(\frac{35+16}{40}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Since \frac{35}{40} and \frac{16}{40} have the same denominator, add them by adding their numerators.
\frac{5}{12}x\times \frac{2}{\sqrt{\left(\frac{51}{40}+\frac{13}{40}\right)\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Add 35 and 16 to get 51.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{51+13}{40}\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Since \frac{51}{40} and \frac{13}{40} have the same denominator, add them by adding their numerators.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{64}{40}\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Add 51 and 13 to get 64.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{8}{5}\times \frac{1}{10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Reduce the fraction \frac{64}{40} to lowest terms by extracting and canceling out 8.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{8\times 1}{5\times 10}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Multiply \frac{8}{5} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{8}{50}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Do the multiplications in the fraction \frac{8\times 1}{5\times 10}.
\frac{5}{12}x\times \frac{2}{\sqrt{\frac{4}{25}}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Reduce the fraction \frac{8}{50} to lowest terms by extracting and canceling out 2.
\frac{5}{12}x\times \frac{2}{\frac{2}{5}}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Rewrite the square root of the division \frac{4}{25} as the division of square roots \frac{\sqrt{4}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{5}{12}x\times 2\times \frac{5}{2}=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Divide 2 by \frac{2}{5} by multiplying 2 by the reciprocal of \frac{2}{5}.
\frac{5}{12}x\times 5=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Cancel out 2 and 2.
\frac{5\times 5}{12}x=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Express \frac{5}{12}\times 5 as a single fraction.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{4}{3}-\frac{5}{8}+\frac{3}{24}\right)}
Multiply 5 and 5 to get 25.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{32}{24}-\frac{15}{24}+\frac{3}{24}\right)}
Least common multiple of 3 and 8 is 24. Convert \frac{4}{3} and \frac{5}{8} to fractions with denominator 24.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{32-15}{24}+\frac{3}{24}\right)}
Since \frac{32}{24} and \frac{15}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{17}{24}+\frac{3}{24}\right)}
Subtract 15 from 32 to get 17.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{17}{24}+\frac{1}{8}\right)}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{25}{12}x=\sqrt{\frac{125}{6}\left(\frac{17}{24}+\frac{3}{24}\right)}
Least common multiple of 24 and 8 is 24. Convert \frac{17}{24} and \frac{1}{8} to fractions with denominator 24.
\frac{25}{12}x=\sqrt{\frac{125}{6}\times \frac{17+3}{24}}
Since \frac{17}{24} and \frac{3}{24} have the same denominator, add them by adding their numerators.
\frac{25}{12}x=\sqrt{\frac{125}{6}\times \frac{20}{24}}
Add 17 and 3 to get 20.
\frac{25}{12}x=\sqrt{\frac{125}{6}\times \frac{5}{6}}
Reduce the fraction \frac{20}{24} to lowest terms by extracting and canceling out 4.
\frac{25}{12}x=\sqrt{\frac{125\times 5}{6\times 6}}
Multiply \frac{125}{6} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{12}x=\sqrt{\frac{625}{36}}
Do the multiplications in the fraction \frac{125\times 5}{6\times 6}.
\frac{25}{12}x=\frac{25}{6}
Rewrite the square root of the division \frac{625}{36} as the division of square roots \frac{\sqrt{625}}{\sqrt{36}}. Take the square root of both numerator and denominator.
x=\frac{25}{6}\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{25\times 12}{6\times 25}
Multiply \frac{25}{6} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{6}
Cancel out 25 in both numerator and denominator.
x=2
Divide 12 by 6 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}