Evaluate
-\frac{x}{6x-5}
Expand
-\frac{x}{6x-5}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 5 } { x } + 6 } { \frac { 25 } { x ^ { 2 } } - 36 }
Share
Copied to clipboard
\frac{\frac{5}{x}+\frac{6x}{x}}{\frac{25}{x^{2}}-36}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{x}{x}.
\frac{\frac{5+6x}{x}}{\frac{25}{x^{2}}-36}
Since \frac{5}{x} and \frac{6x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{5+6x}{x}}{\frac{25}{x^{2}}-\frac{36x^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{x^{2}}{x^{2}}.
\frac{\frac{5+6x}{x}}{\frac{25-36x^{2}}{x^{2}}}
Since \frac{25}{x^{2}} and \frac{36x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(5+6x\right)x^{2}}{x\left(25-36x^{2}\right)}
Divide \frac{5+6x}{x} by \frac{25-36x^{2}}{x^{2}} by multiplying \frac{5+6x}{x} by the reciprocal of \frac{25-36x^{2}}{x^{2}}.
\frac{x\left(6x+5\right)}{-36x^{2}+25}
Cancel out x in both numerator and denominator.
\frac{x\left(6x+5\right)}{\left(-6x-5\right)\left(6x-5\right)}
Factor the expressions that are not already factored.
\frac{-x\left(-6x-5\right)}{\left(-6x-5\right)\left(6x-5\right)}
Extract the negative sign in 5+6x.
\frac{-x}{6x-5}
Cancel out -6x-5 in both numerator and denominator.
\frac{\frac{5}{x}+\frac{6x}{x}}{\frac{25}{x^{2}}-36}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{x}{x}.
\frac{\frac{5+6x}{x}}{\frac{25}{x^{2}}-36}
Since \frac{5}{x} and \frac{6x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{5+6x}{x}}{\frac{25}{x^{2}}-\frac{36x^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 36 times \frac{x^{2}}{x^{2}}.
\frac{\frac{5+6x}{x}}{\frac{25-36x^{2}}{x^{2}}}
Since \frac{25}{x^{2}} and \frac{36x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(5+6x\right)x^{2}}{x\left(25-36x^{2}\right)}
Divide \frac{5+6x}{x} by \frac{25-36x^{2}}{x^{2}} by multiplying \frac{5+6x}{x} by the reciprocal of \frac{25-36x^{2}}{x^{2}}.
\frac{x\left(6x+5\right)}{-36x^{2}+25}
Cancel out x in both numerator and denominator.
\frac{x\left(6x+5\right)}{\left(-6x-5\right)\left(6x-5\right)}
Factor the expressions that are not already factored.
\frac{-x\left(-6x-5\right)}{\left(-6x-5\right)\left(6x-5\right)}
Extract the negative sign in 5+6x.
\frac{-x}{6x-5}
Cancel out -6x-5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}