Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-2 is \left(x-2\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-2}{x-2}. Multiply \frac{3}{x-2} times \frac{x+1}{x+1}.
\frac{\frac{5\left(x-2\right)-3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Since \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} and \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-10-3x-3}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Do the multiplications in 5\left(x-2\right)-3\left(x+1\right).
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Combine like terms in 5x-10-3x-3.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2}{\left(x-5\right)\left(x+2\right)}+\frac{2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x+2 is \left(x-5\right)\left(x+2\right). Multiply \frac{1}{x-5} times \frac{x+2}{x+2}. Multiply \frac{2}{x+2} times \frac{x-5}{x-5}.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2+2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}}
Since \frac{x+2}{\left(x-5\right)\left(x+2\right)} and \frac{2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2+2x-10}{\left(x-5\right)\left(x+2\right)}}
Do the multiplications in x+2+2\left(x-5\right).
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{3x-8}{\left(x-5\right)\left(x+2\right)}}
Combine like terms in x+2+2x-10.
\frac{\left(2x-13\right)\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Divide \frac{2x-13}{\left(x-2\right)\left(x+1\right)} by \frac{3x-8}{\left(x-5\right)\left(x+2\right)} by multiplying \frac{2x-13}{\left(x-2\right)\left(x+1\right)} by the reciprocal of \frac{3x-8}{\left(x-5\right)\left(x+2\right)}.
\frac{\left(2x^{2}-10x-13x+65\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of 2x-13 by each term of x-5.
\frac{\left(2x^{2}-23x+65\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine -10x and -13x to get -23x.
\frac{2x^{3}+4x^{2}-23x^{2}-46x+65x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of 2x^{2}-23x+65 by each term of x+2.
\frac{2x^{3}-19x^{2}-46x+65x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine 4x^{2} and -23x^{2} to get -19x^{2}.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine -46x and 65x to get 19x.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x^{2}+x-2x-2\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of x-2 by each term of x+1.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x^{2}-x-2\right)\left(3x-8\right)}
Combine x and -2x to get -x.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-8x^{2}-3x^{2}+8x-6x+16}
Apply the distributive property by multiplying each term of x^{2}-x-2 by each term of 3x-8.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-11x^{2}+8x-6x+16}
Combine -8x^{2} and -3x^{2} to get -11x^{2}.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-11x^{2}+2x+16}
Combine 8x and -6x to get 2x.
\frac{\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-2 is \left(x-2\right)\left(x+1\right). Multiply \frac{5}{x+1} times \frac{x-2}{x-2}. Multiply \frac{3}{x-2} times \frac{x+1}{x+1}.
\frac{\frac{5\left(x-2\right)-3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Since \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} and \frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5x-10-3x-3}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Do the multiplications in 5\left(x-2\right)-3\left(x+1\right).
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{1}{x-5}+\frac{2}{x+2}}
Combine like terms in 5x-10-3x-3.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2}{\left(x-5\right)\left(x+2\right)}+\frac{2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x+2 is \left(x-5\right)\left(x+2\right). Multiply \frac{1}{x-5} times \frac{x+2}{x+2}. Multiply \frac{2}{x+2} times \frac{x-5}{x-5}.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2+2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)}}
Since \frac{x+2}{\left(x-5\right)\left(x+2\right)} and \frac{2\left(x-5\right)}{\left(x-5\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{x+2+2x-10}{\left(x-5\right)\left(x+2\right)}}
Do the multiplications in x+2+2\left(x-5\right).
\frac{\frac{2x-13}{\left(x-2\right)\left(x+1\right)}}{\frac{3x-8}{\left(x-5\right)\left(x+2\right)}}
Combine like terms in x+2+2x-10.
\frac{\left(2x-13\right)\left(x-5\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Divide \frac{2x-13}{\left(x-2\right)\left(x+1\right)} by \frac{3x-8}{\left(x-5\right)\left(x+2\right)} by multiplying \frac{2x-13}{\left(x-2\right)\left(x+1\right)} by the reciprocal of \frac{3x-8}{\left(x-5\right)\left(x+2\right)}.
\frac{\left(2x^{2}-10x-13x+65\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of 2x-13 by each term of x-5.
\frac{\left(2x^{2}-23x+65\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine -10x and -13x to get -23x.
\frac{2x^{3}+4x^{2}-23x^{2}-46x+65x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of 2x^{2}-23x+65 by each term of x+2.
\frac{2x^{3}-19x^{2}-46x+65x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine 4x^{2} and -23x^{2} to get -19x^{2}.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x-2\right)\left(x+1\right)\left(3x-8\right)}
Combine -46x and 65x to get 19x.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x^{2}+x-2x-2\right)\left(3x-8\right)}
Apply the distributive property by multiplying each term of x-2 by each term of x+1.
\frac{2x^{3}-19x^{2}+19x+130}{\left(x^{2}-x-2\right)\left(3x-8\right)}
Combine x and -2x to get -x.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-8x^{2}-3x^{2}+8x-6x+16}
Apply the distributive property by multiplying each term of x^{2}-x-2 by each term of 3x-8.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-11x^{2}+8x-6x+16}
Combine -8x^{2} and -3x^{2} to get -11x^{2}.
\frac{2x^{3}-19x^{2}+19x+130}{3x^{3}-11x^{2}+2x+16}
Combine 8x and -6x to get 2x.