Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{n-1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and n+1 is \left(n-1\right)\left(n+1\right). Multiply \frac{5}{n-1} times \frac{n+1}{n+1}. Multiply \frac{1}{n+1} times \frac{n-1}{n-1}.
\frac{\frac{5\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Since \frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} and \frac{n-1}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5n+5-n+1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Do the multiplications in 5\left(n+1\right)-\left(n-1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Combine like terms in 5n+5-n+1.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1}{\left(n-1\right)\left(n+1\right)}-\frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n+1 and n-1 is \left(n-1\right)\left(n+1\right). Multiply \frac{1}{n+1} times \frac{n-1}{n-1}. Multiply \frac{2}{n-1} times \frac{n+1}{n+1}.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
Since \frac{n-1}{\left(n-1\right)\left(n+1\right)} and \frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2n-2}{\left(n-1\right)\left(n+1\right)}}
Do the multiplications in n-1-2\left(n+1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{-n-3}{\left(n-1\right)\left(n+1\right)}}
Combine like terms in n-1-2n-2.
\frac{\left(4n+6\right)\left(n-1\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)\left(-n-3\right)}
Divide \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by \frac{-n-3}{\left(n-1\right)\left(n+1\right)} by multiplying \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by the reciprocal of \frac{-n-3}{\left(n-1\right)\left(n+1\right)}.
\frac{4n+6}{-n-3}
Cancel out \left(n-1\right)\left(n+1\right) in both numerator and denominator.
\frac{\frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{n-1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and n+1 is \left(n-1\right)\left(n+1\right). Multiply \frac{5}{n-1} times \frac{n+1}{n+1}. Multiply \frac{1}{n+1} times \frac{n-1}{n-1}.
\frac{\frac{5\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Since \frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} and \frac{n-1}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5n+5-n+1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Do the multiplications in 5\left(n+1\right)-\left(n-1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Combine like terms in 5n+5-n+1.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1}{\left(n-1\right)\left(n+1\right)}-\frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n+1 and n-1 is \left(n-1\right)\left(n+1\right). Multiply \frac{1}{n+1} times \frac{n-1}{n-1}. Multiply \frac{2}{n-1} times \frac{n+1}{n+1}.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
Since \frac{n-1}{\left(n-1\right)\left(n+1\right)} and \frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2n-2}{\left(n-1\right)\left(n+1\right)}}
Do the multiplications in n-1-2\left(n+1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{-n-3}{\left(n-1\right)\left(n+1\right)}}
Combine like terms in n-1-2n-2.
\frac{\left(4n+6\right)\left(n-1\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)\left(-n-3\right)}
Divide \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by \frac{-n-3}{\left(n-1\right)\left(n+1\right)} by multiplying \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by the reciprocal of \frac{-n-3}{\left(n-1\right)\left(n+1\right)}.
\frac{4n+6}{-n-3}
Cancel out \left(n-1\right)\left(n+1\right) in both numerator and denominator.