Evaluate
-\frac{2\left(2n+3\right)}{n+3}
Expand
-\frac{2\left(2n+3\right)}{n+3}
Share
Copied to clipboard
\frac{\frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{n-1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and n+1 is \left(n-1\right)\left(n+1\right). Multiply \frac{5}{n-1} times \frac{n+1}{n+1}. Multiply \frac{1}{n+1} times \frac{n-1}{n-1}.
\frac{\frac{5\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Since \frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} and \frac{n-1}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5n+5-n+1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Do the multiplications in 5\left(n+1\right)-\left(n-1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Combine like terms in 5n+5-n+1.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1}{\left(n-1\right)\left(n+1\right)}-\frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n+1 and n-1 is \left(n-1\right)\left(n+1\right). Multiply \frac{1}{n+1} times \frac{n-1}{n-1}. Multiply \frac{2}{n-1} times \frac{n+1}{n+1}.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
Since \frac{n-1}{\left(n-1\right)\left(n+1\right)} and \frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2n-2}{\left(n-1\right)\left(n+1\right)}}
Do the multiplications in n-1-2\left(n+1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{-n-3}{\left(n-1\right)\left(n+1\right)}}
Combine like terms in n-1-2n-2.
\frac{\left(4n+6\right)\left(n-1\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)\left(-n-3\right)}
Divide \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by \frac{-n-3}{\left(n-1\right)\left(n+1\right)} by multiplying \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by the reciprocal of \frac{-n-3}{\left(n-1\right)\left(n+1\right)}.
\frac{4n+6}{-n-3}
Cancel out \left(n-1\right)\left(n+1\right) in both numerator and denominator.
\frac{\frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{n-1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-1 and n+1 is \left(n-1\right)\left(n+1\right). Multiply \frac{5}{n-1} times \frac{n+1}{n+1}. Multiply \frac{1}{n+1} times \frac{n-1}{n-1}.
\frac{\frac{5\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Since \frac{5\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} and \frac{n-1}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5n+5-n+1}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Do the multiplications in 5\left(n+1\right)-\left(n-1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{1}{n+1}-\frac{2}{n-1}}
Combine like terms in 5n+5-n+1.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1}{\left(n-1\right)\left(n+1\right)}-\frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n+1 and n-1 is \left(n-1\right)\left(n+1\right). Multiply \frac{1}{n+1} times \frac{n-1}{n-1}. Multiply \frac{2}{n-1} times \frac{n+1}{n+1}.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}}
Since \frac{n-1}{\left(n-1\right)\left(n+1\right)} and \frac{2\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{n-1-2n-2}{\left(n-1\right)\left(n+1\right)}}
Do the multiplications in n-1-2\left(n+1\right).
\frac{\frac{4n+6}{\left(n-1\right)\left(n+1\right)}}{\frac{-n-3}{\left(n-1\right)\left(n+1\right)}}
Combine like terms in n-1-2n-2.
\frac{\left(4n+6\right)\left(n-1\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)\left(-n-3\right)}
Divide \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by \frac{-n-3}{\left(n-1\right)\left(n+1\right)} by multiplying \frac{4n+6}{\left(n-1\right)\left(n+1\right)} by the reciprocal of \frac{-n-3}{\left(n-1\right)\left(n+1\right)}.
\frac{4n+6}{-n-3}
Cancel out \left(n-1\right)\left(n+1\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}