Evaluate
\frac{1}{11}\approx 0.090909091
Factor
\frac{1}{11} = 0.09090909090909091
Share
Copied to clipboard
\frac{\frac{5\times 4}{6\times 35}}{1+\frac{1}{3}-\frac{2}{7}}
Multiply \frac{5}{6} times \frac{4}{35} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{20}{210}}{1+\frac{1}{3}-\frac{2}{7}}
Do the multiplications in the fraction \frac{5\times 4}{6\times 35}.
\frac{\frac{2}{21}}{1+\frac{1}{3}-\frac{2}{7}}
Reduce the fraction \frac{20}{210} to lowest terms by extracting and canceling out 10.
\frac{\frac{2}{21}}{\frac{3}{3}+\frac{1}{3}-\frac{2}{7}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{2}{21}}{\frac{3+1}{3}-\frac{2}{7}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{21}}{\frac{4}{3}-\frac{2}{7}}
Add 3 and 1 to get 4.
\frac{\frac{2}{21}}{\frac{28}{21}-\frac{6}{21}}
Least common multiple of 3 and 7 is 21. Convert \frac{4}{3} and \frac{2}{7} to fractions with denominator 21.
\frac{\frac{2}{21}}{\frac{28-6}{21}}
Since \frac{28}{21} and \frac{6}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{21}}{\frac{22}{21}}
Subtract 6 from 28 to get 22.
\frac{2}{21}\times \frac{21}{22}
Divide \frac{2}{21} by \frac{22}{21} by multiplying \frac{2}{21} by the reciprocal of \frac{22}{21}.
\frac{2\times 21}{21\times 22}
Multiply \frac{2}{21} times \frac{21}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{22}
Cancel out 21 in both numerator and denominator.
\frac{1}{11}
Reduce the fraction \frac{2}{22} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}