Evaluate
\frac{128}{7}\approx 18.285714286
Factor
\frac{2 ^ {7}}{7} = 18\frac{2}{7} = 18.285714285714285
Share
Copied to clipboard
\frac{\frac{5\times 16}{4\times 7}-\frac{\frac{44}{5}}{\frac{11}{15}}}{\frac{1}{3}-\frac{5}{6}}
Multiply \frac{5}{4} times \frac{16}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{80}{28}-\frac{\frac{44}{5}}{\frac{11}{15}}}{\frac{1}{3}-\frac{5}{6}}
Do the multiplications in the fraction \frac{5\times 16}{4\times 7}.
\frac{\frac{20}{7}-\frac{\frac{44}{5}}{\frac{11}{15}}}{\frac{1}{3}-\frac{5}{6}}
Reduce the fraction \frac{80}{28} to lowest terms by extracting and canceling out 4.
\frac{\frac{20}{7}-\frac{44}{5}\times \frac{15}{11}}{\frac{1}{3}-\frac{5}{6}}
Divide \frac{44}{5} by \frac{11}{15} by multiplying \frac{44}{5} by the reciprocal of \frac{11}{15}.
\frac{\frac{20}{7}-\frac{44\times 15}{5\times 11}}{\frac{1}{3}-\frac{5}{6}}
Multiply \frac{44}{5} times \frac{15}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{20}{7}-\frac{660}{55}}{\frac{1}{3}-\frac{5}{6}}
Do the multiplications in the fraction \frac{44\times 15}{5\times 11}.
\frac{\frac{20}{7}-12}{\frac{1}{3}-\frac{5}{6}}
Divide 660 by 55 to get 12.
\frac{\frac{20}{7}-\frac{84}{7}}{\frac{1}{3}-\frac{5}{6}}
Convert 12 to fraction \frac{84}{7}.
\frac{\frac{20-84}{7}}{\frac{1}{3}-\frac{5}{6}}
Since \frac{20}{7} and \frac{84}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{64}{7}}{\frac{1}{3}-\frac{5}{6}}
Subtract 84 from 20 to get -64.
\frac{-\frac{64}{7}}{\frac{2}{6}-\frac{5}{6}}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{-\frac{64}{7}}{\frac{2-5}{6}}
Since \frac{2}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{64}{7}}{\frac{-3}{6}}
Subtract 5 from 2 to get -3.
\frac{-\frac{64}{7}}{-\frac{1}{2}}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-\frac{64}{7}\left(-2\right)
Divide -\frac{64}{7} by -\frac{1}{2} by multiplying -\frac{64}{7} by the reciprocal of -\frac{1}{2}.
\frac{-64\left(-2\right)}{7}
Express -\frac{64}{7}\left(-2\right) as a single fraction.
\frac{128}{7}
Multiply -64 and -2 to get 128.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}