Evaluate
\frac{17468}{3x}
Expand
\frac{17468}{3x}
Graph
Share
Copied to clipboard
\frac{\frac{15}{15}\times \frac{8+3}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply 5 and 3 to get 15.
\frac{1\times \frac{8+3}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Divide 15 by 15 to get 1.
\frac{1\times \frac{11}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Add 8 and 3 to get 11.
\frac{\frac{11}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply 1 and \frac{11}{2} to get \frac{11}{2}.
\frac{\frac{11}{2}}{\frac{1}{2}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{11}{2}}{\frac{15}{2}x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply \frac{1}{2} and 15 to get \frac{15}{2}.
\frac{\frac{11}{2}}{\frac{15\times 5}{2}x}\times 10^{3}\left(55-15.3\right)
Express \frac{15}{2}\times 5 as a single fraction.
\frac{\frac{11}{2}}{\frac{75}{2}x}\times 10^{3}\left(55-15.3\right)
Multiply 15 and 5 to get 75.
\frac{11}{2\times \frac{75}{2}x}\times 10^{3}\left(55-15.3\right)
Express \frac{\frac{11}{2}}{\frac{75}{2}x} as a single fraction.
\frac{11}{75x}\times 10^{3}\left(55-15.3\right)
Cancel out 2 and 2.
\frac{11}{75x}\times 1000\left(55-15.3\right)
Calculate 10 to the power of 3 and get 1000.
\frac{11}{75x}\times 1000\times 39.7
Subtract 15.3 from 55 to get 39.7.
\frac{11}{75x}\times 39700
Multiply 1000 and 39.7 to get 39700.
\frac{11\times 39700}{75x}
Express \frac{11}{75x}\times 39700 as a single fraction.
\frac{11\times 1588}{3x}
Cancel out 25 in both numerator and denominator.
\frac{17468}{3x}
Multiply 11 and 1588 to get 17468.
\frac{\frac{15}{15}\times \frac{8+3}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply 5 and 3 to get 15.
\frac{1\times \frac{8+3}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Divide 15 by 15 to get 1.
\frac{1\times \frac{11}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Add 8 and 3 to get 11.
\frac{\frac{11}{2}}{\frac{3}{6}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply 1 and \frac{11}{2} to get \frac{11}{2}.
\frac{\frac{11}{2}}{\frac{1}{2}\times 15x\times 5}\times 10^{3}\left(55-15.3\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{11}{2}}{\frac{15}{2}x\times 5}\times 10^{3}\left(55-15.3\right)
Multiply \frac{1}{2} and 15 to get \frac{15}{2}.
\frac{\frac{11}{2}}{\frac{15\times 5}{2}x}\times 10^{3}\left(55-15.3\right)
Express \frac{15}{2}\times 5 as a single fraction.
\frac{\frac{11}{2}}{\frac{75}{2}x}\times 10^{3}\left(55-15.3\right)
Multiply 15 and 5 to get 75.
\frac{11}{2\times \frac{75}{2}x}\times 10^{3}\left(55-15.3\right)
Express \frac{\frac{11}{2}}{\frac{75}{2}x} as a single fraction.
\frac{11}{75x}\times 10^{3}\left(55-15.3\right)
Cancel out 2 and 2.
\frac{11}{75x}\times 1000\left(55-15.3\right)
Calculate 10 to the power of 3 and get 1000.
\frac{11}{75x}\times 1000\times 39.7
Subtract 15.3 from 55 to get 39.7.
\frac{11}{75x}\times 39700
Multiply 1000 and 39.7 to get 39700.
\frac{11\times 39700}{75x}
Express \frac{11}{75x}\times 39700 as a single fraction.
\frac{11\times 1588}{3x}
Cancel out 25 in both numerator and denominator.
\frac{17468}{3x}
Multiply 11 and 1588 to get 17468.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}