Evaluate
2\left(p-q\right)
Expand
2p-2q
Share
Copied to clipboard
\frac{\frac{4pp}{pq}-\frac{4qq}{pq}}{\frac{2}{q}+\frac{2}{p}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of q and p is pq. Multiply \frac{4p}{q} times \frac{p}{p}. Multiply \frac{4q}{p} times \frac{q}{q}.
\frac{\frac{4pp-4qq}{pq}}{\frac{2}{q}+\frac{2}{p}}
Since \frac{4pp}{pq} and \frac{4qq}{pq} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2}{q}+\frac{2}{p}}
Do the multiplications in 4pp-4qq.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2p}{pq}+\frac{2q}{pq}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of q and p is pq. Multiply \frac{2}{q} times \frac{p}{p}. Multiply \frac{2}{p} times \frac{q}{q}.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2p+2q}{pq}}
Since \frac{2p}{pq} and \frac{2q}{pq} have the same denominator, add them by adding their numerators.
\frac{\left(4p^{2}-4q^{2}\right)pq}{pq\left(2p+2q\right)}
Divide \frac{4p^{2}-4q^{2}}{pq} by \frac{2p+2q}{pq} by multiplying \frac{4p^{2}-4q^{2}}{pq} by the reciprocal of \frac{2p+2q}{pq}.
\frac{4p^{2}-4q^{2}}{2p+2q}
Cancel out pq in both numerator and denominator.
\frac{4\left(p+q\right)\left(p-q\right)}{2\left(p+q\right)}
Factor the expressions that are not already factored.
2\left(p-q\right)
Cancel out 2\left(p+q\right) in both numerator and denominator.
2p-2q
Expand the expression.
\frac{\frac{4pp}{pq}-\frac{4qq}{pq}}{\frac{2}{q}+\frac{2}{p}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of q and p is pq. Multiply \frac{4p}{q} times \frac{p}{p}. Multiply \frac{4q}{p} times \frac{q}{q}.
\frac{\frac{4pp-4qq}{pq}}{\frac{2}{q}+\frac{2}{p}}
Since \frac{4pp}{pq} and \frac{4qq}{pq} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2}{q}+\frac{2}{p}}
Do the multiplications in 4pp-4qq.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2p}{pq}+\frac{2q}{pq}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of q and p is pq. Multiply \frac{2}{q} times \frac{p}{p}. Multiply \frac{2}{p} times \frac{q}{q}.
\frac{\frac{4p^{2}-4q^{2}}{pq}}{\frac{2p+2q}{pq}}
Since \frac{2p}{pq} and \frac{2q}{pq} have the same denominator, add them by adding their numerators.
\frac{\left(4p^{2}-4q^{2}\right)pq}{pq\left(2p+2q\right)}
Divide \frac{4p^{2}-4q^{2}}{pq} by \frac{2p+2q}{pq} by multiplying \frac{4p^{2}-4q^{2}}{pq} by the reciprocal of \frac{2p+2q}{pq}.
\frac{4p^{2}-4q^{2}}{2p+2q}
Cancel out pq in both numerator and denominator.
\frac{4\left(p+q\right)\left(p-q\right)}{2\left(p+q\right)}
Factor the expressions that are not already factored.
2\left(p-q\right)
Cancel out 2\left(p+q\right) in both numerator and denominator.
2p-2q
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}