Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{4}{\left(x-5\right)\left(x+5\right)}+\frac{2}{x+5}}{\frac{1}{x+5}+\frac{1}{x-5}}
Factor x^{2}-25.
\frac{\frac{4}{\left(x-5\right)\left(x+5\right)}+\frac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x+5\right) and x+5 is \left(x-5\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x-5}{x-5}.
\frac{\frac{4+2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Since \frac{4}{\left(x-5\right)\left(x+5\right)} and \frac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{4+2x-10}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Do the multiplications in 4+2\left(x-5\right).
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Combine like terms in 4+2x-10.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x+5}{\left(x-5\right)\left(x+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+5 and x-5 is \left(x-5\right)\left(x+5\right). Multiply \frac{1}{x+5} times \frac{x-5}{x-5}. Multiply \frac{1}{x-5} times \frac{x+5}{x+5}.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{x-5+x+5}{\left(x-5\right)\left(x+5\right)}}
Since \frac{x-5}{\left(x-5\right)\left(x+5\right)} and \frac{x+5}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{2x}{\left(x-5\right)\left(x+5\right)}}
Combine like terms in x-5+x+5.
\frac{\left(-6+2x\right)\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)\times 2x}
Divide \frac{-6+2x}{\left(x-5\right)\left(x+5\right)} by \frac{2x}{\left(x-5\right)\left(x+5\right)} by multiplying \frac{-6+2x}{\left(x-5\right)\left(x+5\right)} by the reciprocal of \frac{2x}{\left(x-5\right)\left(x+5\right)}.
\frac{2x-6}{2x}
Cancel out \left(x-5\right)\left(x+5\right) in both numerator and denominator.
\frac{2\left(x-3\right)}{2x}
Factor the expressions that are not already factored.
\frac{x-3}{x}
Cancel out 2 in both numerator and denominator.
\frac{\frac{4}{\left(x-5\right)\left(x+5\right)}+\frac{2}{x+5}}{\frac{1}{x+5}+\frac{1}{x-5}}
Factor x^{2}-25.
\frac{\frac{4}{\left(x-5\right)\left(x+5\right)}+\frac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-5\right)\left(x+5\right) and x+5 is \left(x-5\right)\left(x+5\right). Multiply \frac{2}{x+5} times \frac{x-5}{x-5}.
\frac{\frac{4+2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Since \frac{4}{\left(x-5\right)\left(x+5\right)} and \frac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{4+2x-10}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Do the multiplications in 4+2\left(x-5\right).
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{1}{x+5}+\frac{1}{x-5}}
Combine like terms in 4+2x-10.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x+5}{\left(x-5\right)\left(x+5\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+5 and x-5 is \left(x-5\right)\left(x+5\right). Multiply \frac{1}{x+5} times \frac{x-5}{x-5}. Multiply \frac{1}{x-5} times \frac{x+5}{x+5}.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{x-5+x+5}{\left(x-5\right)\left(x+5\right)}}
Since \frac{x-5}{\left(x-5\right)\left(x+5\right)} and \frac{x+5}{\left(x-5\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-6+2x}{\left(x-5\right)\left(x+5\right)}}{\frac{2x}{\left(x-5\right)\left(x+5\right)}}
Combine like terms in x-5+x+5.
\frac{\left(-6+2x\right)\left(x-5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)\times 2x}
Divide \frac{-6+2x}{\left(x-5\right)\left(x+5\right)} by \frac{2x}{\left(x-5\right)\left(x+5\right)} by multiplying \frac{-6+2x}{\left(x-5\right)\left(x+5\right)} by the reciprocal of \frac{2x}{\left(x-5\right)\left(x+5\right)}.
\frac{2x-6}{2x}
Cancel out \left(x-5\right)\left(x+5\right) in both numerator and denominator.
\frac{2\left(x-3\right)}{2x}
Factor the expressions that are not already factored.
\frac{x-3}{x}
Cancel out 2 in both numerator and denominator.