Evaluate
\frac{x+2y}{xy}
Expand
\frac{x+2y}{xy}
Share
Copied to clipboard
\frac{\frac{4y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{4}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
Since \frac{4y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y}{xy}-\frac{x}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{2}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y-x}{xy}}
Since \frac{2y}{xy} and \frac{x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(4y^{2}-x^{2}\right)xy}{x^{2}y^{2}\left(2y-x\right)}
Divide \frac{4y^{2}-x^{2}}{x^{2}y^{2}} by \frac{2y-x}{xy} by multiplying \frac{4y^{2}-x^{2}}{x^{2}y^{2}} by the reciprocal of \frac{2y-x}{xy}.
\frac{-x^{2}+4y^{2}}{xy\left(-x+2y\right)}
Cancel out xy in both numerator and denominator.
\frac{\left(x+2y\right)\left(-x+2y\right)}{xy\left(-x+2y\right)}
Factor the expressions that are not already factored.
\frac{x+2y}{xy}
Cancel out -x+2y in both numerator and denominator.
\frac{\frac{4y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{4}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2}{x}-\frac{1}{y}}
Since \frac{4y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y}{xy}-\frac{x}{xy}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{2}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{4y^{2}-x^{2}}{x^{2}y^{2}}}{\frac{2y-x}{xy}}
Since \frac{2y}{xy} and \frac{x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(4y^{2}-x^{2}\right)xy}{x^{2}y^{2}\left(2y-x\right)}
Divide \frac{4y^{2}-x^{2}}{x^{2}y^{2}} by \frac{2y-x}{xy} by multiplying \frac{4y^{2}-x^{2}}{x^{2}y^{2}} by the reciprocal of \frac{2y-x}{xy}.
\frac{-x^{2}+4y^{2}}{xy\left(-x+2y\right)}
Cancel out xy in both numerator and denominator.
\frac{\left(x+2y\right)\left(-x+2y\right)}{xy\left(-x+2y\right)}
Factor the expressions that are not already factored.
\frac{x+2y}{xy}
Cancel out -x+2y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}