Evaluate
-\frac{2882}{8575}\approx -0.336093294
Factor
-\frac{2882}{8575} = -0.3360932944606414
Share
Copied to clipboard
\frac{\left(\frac{4}{7}+\frac{1}{2}\left(3-\frac{2}{5}\right)\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Divide \frac{\frac{4}{7}+\frac{1}{2}\left(3-\frac{2}{5}\right)}{25+\frac{1}{4}\left(1-3\right)} by \frac{5}{8} by multiplying \frac{\frac{4}{7}+\frac{1}{2}\left(3-\frac{2}{5}\right)}{25+\frac{1}{4}\left(1-3\right)} by the reciprocal of \frac{5}{8}.
\frac{\left(\frac{4}{7}+\frac{1}{2}\left(\frac{15}{5}-\frac{2}{5}\right)\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Convert 3 to fraction \frac{15}{5}.
\frac{\left(\frac{4}{7}+\frac{1}{2}\times \frac{15-2}{5}\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Since \frac{15}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{4}{7}+\frac{1}{2}\times \frac{13}{5}\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Subtract 2 from 15 to get 13.
\frac{\left(\frac{4}{7}+\frac{1\times 13}{2\times 5}\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Multiply \frac{1}{2} times \frac{13}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{4}{7}+\frac{13}{10}\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Do the multiplications in the fraction \frac{1\times 13}{2\times 5}.
\frac{\left(\frac{40}{70}+\frac{91}{70}\right)\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Least common multiple of 7 and 10 is 70. Convert \frac{4}{7} and \frac{13}{10} to fractions with denominator 70.
\frac{\frac{40+91}{70}\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Since \frac{40}{70} and \frac{91}{70} have the same denominator, add them by adding their numerators.
\frac{\frac{131}{70}\times 8}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Add 40 and 91 to get 131.
\frac{\frac{131\times 8}{70}}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Express \frac{131}{70}\times 8 as a single fraction.
\frac{\frac{1048}{70}}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Multiply 131 and 8 to get 1048.
\frac{\frac{524}{35}}{\left(25+\frac{1}{4}\left(1-3\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Reduce the fraction \frac{1048}{70} to lowest terms by extracting and canceling out 2.
\frac{\frac{524}{35}}{\left(25+\frac{1}{4}\left(-2\right)\right)\times 5}\left(\frac{1}{4}-3\right)
Subtract 3 from 1 to get -2.
\frac{\frac{524}{35}}{\left(25+\frac{-2}{4}\right)\times 5}\left(\frac{1}{4}-3\right)
Multiply \frac{1}{4} and -2 to get \frac{-2}{4}.
\frac{\frac{524}{35}}{\left(25-\frac{1}{2}\right)\times 5}\left(\frac{1}{4}-3\right)
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{524}{35}}{\left(\frac{50}{2}-\frac{1}{2}\right)\times 5}\left(\frac{1}{4}-3\right)
Convert 25 to fraction \frac{50}{2}.
\frac{\frac{524}{35}}{\frac{50-1}{2}\times 5}\left(\frac{1}{4}-3\right)
Since \frac{50}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{524}{35}}{\frac{49}{2}\times 5}\left(\frac{1}{4}-3\right)
Subtract 1 from 50 to get 49.
\frac{\frac{524}{35}}{\frac{49\times 5}{2}}\left(\frac{1}{4}-3\right)
Express \frac{49}{2}\times 5 as a single fraction.
\frac{\frac{524}{35}}{\frac{245}{2}}\left(\frac{1}{4}-3\right)
Multiply 49 and 5 to get 245.
\frac{524}{35}\times \frac{2}{245}\left(\frac{1}{4}-3\right)
Divide \frac{524}{35} by \frac{245}{2} by multiplying \frac{524}{35} by the reciprocal of \frac{245}{2}.
\frac{524\times 2}{35\times 245}\left(\frac{1}{4}-3\right)
Multiply \frac{524}{35} times \frac{2}{245} by multiplying numerator times numerator and denominator times denominator.
\frac{1048}{8575}\left(\frac{1}{4}-3\right)
Do the multiplications in the fraction \frac{524\times 2}{35\times 245}.
\frac{1048}{8575}\left(\frac{1}{4}-\frac{12}{4}\right)
Convert 3 to fraction \frac{12}{4}.
\frac{1048}{8575}\times \frac{1-12}{4}
Since \frac{1}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1048}{8575}\left(-\frac{11}{4}\right)
Subtract 12 from 1 to get -11.
\frac{1048\left(-11\right)}{8575\times 4}
Multiply \frac{1048}{8575} times -\frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-11528}{34300}
Do the multiplications in the fraction \frac{1048\left(-11\right)}{8575\times 4}.
-\frac{2882}{8575}
Reduce the fraction \frac{-11528}{34300} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}