Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{4\left(3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}-\frac{4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a+3x-1 and 3a-1 is \left(3a-1\right)\left(3x+3a-1\right). Multiply \frac{4}{3a+3x-1} times \frac{3a-1}{3a-1}. Multiply \frac{4}{3a-1} times \frac{3x+3a-1}{3x+3a-1}.
\frac{\frac{4\left(3a-1\right)-4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Since \frac{4\left(3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)} and \frac{4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12a-4-12x-12a+4}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Do the multiplications in 4\left(3a-1\right)-4\left(3x+3a-1\right).
\frac{\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Combine like terms in 12a-4-12x-12a+4.
\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)x}
Express \frac{\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)}}{x} as a single fraction.
\frac{-12}{\left(3a-1\right)\left(3x+3a-1\right)}
Cancel out x in both numerator and denominator.
\frac{-12}{9ax+9a^{2}-3a-3x-3a+1}
Apply the distributive property by multiplying each term of 3a-1 by each term of 3x+3a-1.
\frac{-12}{9ax+9a^{2}-6a-3x+1}
Combine -3a and -3a to get -6a.
\frac{\frac{4\left(3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}-\frac{4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a+3x-1 and 3a-1 is \left(3a-1\right)\left(3x+3a-1\right). Multiply \frac{4}{3a+3x-1} times \frac{3a-1}{3a-1}. Multiply \frac{4}{3a-1} times \frac{3x+3a-1}{3x+3a-1}.
\frac{\frac{4\left(3a-1\right)-4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Since \frac{4\left(3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)} and \frac{4\left(3x+3a-1\right)}{\left(3a-1\right)\left(3x+3a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12a-4-12x-12a+4}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Do the multiplications in 4\left(3a-1\right)-4\left(3x+3a-1\right).
\frac{\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)}}{x}
Combine like terms in 12a-4-12x-12a+4.
\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)x}
Express \frac{\frac{-12x}{\left(3a-1\right)\left(3x+3a-1\right)}}{x} as a single fraction.
\frac{-12}{\left(3a-1\right)\left(3x+3a-1\right)}
Cancel out x in both numerator and denominator.
\frac{-12}{9ax+9a^{2}-3a-3x-3a+1}
Apply the distributive property by multiplying each term of 3a-1 by each term of 3x+3a-1.
\frac{-12}{9ax+9a^{2}-6a-3x+1}
Combine -3a and -3a to get -6a.