Evaluate
\frac{144}{29x}
Expand
\frac{144}{29x}
Graph
Share
Copied to clipboard
\frac{\frac{36x}{x\left(x-4\right)}-\frac{36\left(x-4\right)}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x is x\left(x-4\right). Multiply \frac{36}{x-4} times \frac{x}{x}. Multiply \frac{36}{x} times \frac{x-4}{x-4}.
\frac{\frac{36x-36\left(x-4\right)}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Since \frac{36x}{x\left(x-4\right)} and \frac{36\left(x-4\right)}{x\left(x-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{36x-36x+144}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Do the multiplications in 36x-36\left(x-4\right).
\frac{\frac{144}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Combine like terms in 36x-36x+144.
\frac{\frac{144}{x\left(x-4\right)}}{\frac{29}{x-4}}
Since \frac{30}{x-4} and \frac{1}{x-4} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 30 to get 29.
\frac{144\left(x-4\right)}{x\left(x-4\right)\times 29}
Divide \frac{144}{x\left(x-4\right)} by \frac{29}{x-4} by multiplying \frac{144}{x\left(x-4\right)} by the reciprocal of \frac{29}{x-4}.
\frac{144}{29x}
Cancel out x-4 in both numerator and denominator.
\frac{\frac{36x}{x\left(x-4\right)}-\frac{36\left(x-4\right)}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x is x\left(x-4\right). Multiply \frac{36}{x-4} times \frac{x}{x}. Multiply \frac{36}{x} times \frac{x-4}{x-4}.
\frac{\frac{36x-36\left(x-4\right)}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Since \frac{36x}{x\left(x-4\right)} and \frac{36\left(x-4\right)}{x\left(x-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{36x-36x+144}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Do the multiplications in 36x-36\left(x-4\right).
\frac{\frac{144}{x\left(x-4\right)}}{\frac{30}{x-4}-\frac{1}{x-4}}
Combine like terms in 36x-36x+144.
\frac{\frac{144}{x\left(x-4\right)}}{\frac{29}{x-4}}
Since \frac{30}{x-4} and \frac{1}{x-4} have the same denominator, subtract them by subtracting their numerators. Subtract 1 from 30 to get 29.
\frac{144\left(x-4\right)}{x\left(x-4\right)\times 29}
Divide \frac{144}{x\left(x-4\right)} by \frac{29}{x-4} by multiplying \frac{144}{x\left(x-4\right)} by the reciprocal of \frac{29}{x-4}.
\frac{144}{29x}
Cancel out x-4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}