Evaluate
\frac{486}{7985}\approx 0.06086412
Factor
\frac{2 \cdot 3 ^ {5}}{5 \cdot 1597} = 0.06086412022542267
Share
Copied to clipboard
\frac{\frac{9}{250}\times \frac{18}{43}}{\frac{1}{6}\left(1-\frac{18}{43}\right)+\frac{36}{100}\times \frac{18}{43}}
Reduce the fraction \frac{36}{1000} to lowest terms by extracting and canceling out 4.
\frac{\frac{9\times 18}{250\times 43}}{\frac{1}{6}\left(1-\frac{18}{43}\right)+\frac{36}{100}\times \frac{18}{43}}
Multiply \frac{9}{250} times \frac{18}{43} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{162}{10750}}{\frac{1}{6}\left(1-\frac{18}{43}\right)+\frac{36}{100}\times \frac{18}{43}}
Do the multiplications in the fraction \frac{9\times 18}{250\times 43}.
\frac{\frac{81}{5375}}{\frac{1}{6}\left(1-\frac{18}{43}\right)+\frac{36}{100}\times \frac{18}{43}}
Reduce the fraction \frac{162}{10750} to lowest terms by extracting and canceling out 2.
\frac{\frac{81}{5375}}{\frac{1}{6}\left(\frac{43}{43}-\frac{18}{43}\right)+\frac{36}{100}\times \frac{18}{43}}
Convert 1 to fraction \frac{43}{43}.
\frac{\frac{81}{5375}}{\frac{1}{6}\times \frac{43-18}{43}+\frac{36}{100}\times \frac{18}{43}}
Since \frac{43}{43} and \frac{18}{43} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{81}{5375}}{\frac{1}{6}\times \frac{25}{43}+\frac{36}{100}\times \frac{18}{43}}
Subtract 18 from 43 to get 25.
\frac{\frac{81}{5375}}{\frac{1\times 25}{6\times 43}+\frac{36}{100}\times \frac{18}{43}}
Multiply \frac{1}{6} times \frac{25}{43} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{81}{5375}}{\frac{25}{258}+\frac{36}{100}\times \frac{18}{43}}
Do the multiplications in the fraction \frac{1\times 25}{6\times 43}.
\frac{\frac{81}{5375}}{\frac{25}{258}+\frac{9}{25}\times \frac{18}{43}}
Reduce the fraction \frac{36}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{81}{5375}}{\frac{25}{258}+\frac{9\times 18}{25\times 43}}
Multiply \frac{9}{25} times \frac{18}{43} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{81}{5375}}{\frac{25}{258}+\frac{162}{1075}}
Do the multiplications in the fraction \frac{9\times 18}{25\times 43}.
\frac{\frac{81}{5375}}{\frac{625}{6450}+\frac{972}{6450}}
Least common multiple of 258 and 1075 is 6450. Convert \frac{25}{258} and \frac{162}{1075} to fractions with denominator 6450.
\frac{\frac{81}{5375}}{\frac{625+972}{6450}}
Since \frac{625}{6450} and \frac{972}{6450} have the same denominator, add them by adding their numerators.
\frac{\frac{81}{5375}}{\frac{1597}{6450}}
Add 625 and 972 to get 1597.
\frac{81}{5375}\times \frac{6450}{1597}
Divide \frac{81}{5375} by \frac{1597}{6450} by multiplying \frac{81}{5375} by the reciprocal of \frac{1597}{6450}.
\frac{81\times 6450}{5375\times 1597}
Multiply \frac{81}{5375} times \frac{6450}{1597} by multiplying numerator times numerator and denominator times denominator.
\frac{522450}{8583875}
Do the multiplications in the fraction \frac{81\times 6450}{5375\times 1597}.
\frac{486}{7985}
Reduce the fraction \frac{522450}{8583875} to lowest terms by extracting and canceling out 1075.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}