Evaluate
\frac{\left(1-y\right)\left(3-y\right)}{x^{2}}
Expand
\frac{y^{2}-4y+3}{x^{2}}
Share
Copied to clipboard
\frac{\frac{\left(3-y\right)\left(1-y\right)}{x}}{x}
Express \frac{3-y}{x}\left(1-y\right) as a single fraction.
\frac{\left(3-y\right)\left(1-y\right)}{xx}
Express \frac{\frac{\left(3-y\right)\left(1-y\right)}{x}}{x} as a single fraction.
\frac{\left(3-y\right)\left(1-y\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{3-3y-y+y^{2}}{x^{2}}
Apply the distributive property by multiplying each term of 3-y by each term of 1-y.
\frac{3-4y+y^{2}}{x^{2}}
Combine -3y and -y to get -4y.
\frac{\frac{\left(3-y\right)\left(1-y\right)}{x}}{x}
Express \frac{3-y}{x}\left(1-y\right) as a single fraction.
\frac{\left(3-y\right)\left(1-y\right)}{xx}
Express \frac{\frac{\left(3-y\right)\left(1-y\right)}{x}}{x} as a single fraction.
\frac{\left(3-y\right)\left(1-y\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{3-3y-y+y^{2}}{x^{2}}
Apply the distributive property by multiplying each term of 3-y by each term of 1-y.
\frac{3-4y+y^{2}}{x^{2}}
Combine -3y and -y to get -4y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}