Evaluate
\frac{3\left(x+1\right)}{\left(x-7\right)\left(4x+3\right)}
Expand
\frac{3\left(x+1\right)}{\left(x-7\right)\left(4x+3\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 3 } { x - 7 } } { \frac { 4 x + 3 } { x + 1 } }
Share
Copied to clipboard
\frac{3\left(x+1\right)}{\left(x-7\right)\left(4x+3\right)}
Divide \frac{3}{x-7} by \frac{4x+3}{x+1} by multiplying \frac{3}{x-7} by the reciprocal of \frac{4x+3}{x+1}.
\frac{3x+3}{\left(x-7\right)\left(4x+3\right)}
Use the distributive property to multiply 3 by x+1.
\frac{3x+3}{4x^{2}+3x-28x-21}
Apply the distributive property by multiplying each term of x-7 by each term of 4x+3.
\frac{3x+3}{4x^{2}-25x-21}
Combine 3x and -28x to get -25x.
\frac{3\left(x+1\right)}{\left(x-7\right)\left(4x+3\right)}
Divide \frac{3}{x-7} by \frac{4x+3}{x+1} by multiplying \frac{3}{x-7} by the reciprocal of \frac{4x+3}{x+1}.
\frac{3x+3}{\left(x-7\right)\left(4x+3\right)}
Use the distributive property to multiply 3 by x+1.
\frac{3x+3}{4x^{2}+3x-28x-21}
Apply the distributive property by multiplying each term of x-7 by each term of 4x+3.
\frac{3x+3}{4x^{2}-25x-21}
Combine 3x and -28x to get -25x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}