Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(x+y\right)}{\left(x-4\right)\left(x+y\right)}+\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+y is \left(x-4\right)\left(x+y\right). Multiply \frac{3}{x-4} times \frac{x+y}{x+y}. Multiply \frac{3}{x+y} times \frac{x-4}{x-4}.
\frac{\frac{3\left(x+y\right)+3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Since \frac{3\left(x+y\right)}{\left(x-4\right)\left(x+y\right)} and \frac{3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3x+3y+3x-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Do the multiplications in 3\left(x+y\right)+3\left(x-4\right).
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Combine like terms in 3x+3y+3x-12.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3x}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x\left(x+4\right)-3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x^{2}+12x-3x^{2}+12x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x\left(x+4\right)-3x\left(x-4\right).
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{24x}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x^{2}+12x-3x^{2}+12x.
\frac{\left(6x+3y-12\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+y\right)\times 24x}
Divide \frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)} by \frac{24x}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)} by the reciprocal of \frac{24x}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x+4\right)\left(6x+3y-12\right)}{24x\left(x+y\right)}
Cancel out x-4 in both numerator and denominator.
\frac{3\left(x+4\right)\left(2x+y-4\right)}{24x\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+4\right)\left(2x+y-4\right)}{8x\left(x+y\right)}
Cancel out 3 in both numerator and denominator.
\frac{2x^{2}+xy+4x+4y-16}{8x^{2}+8xy}
Expand the expression.
\frac{\frac{3\left(x+y\right)}{\left(x-4\right)\left(x+y\right)}+\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+y is \left(x-4\right)\left(x+y\right). Multiply \frac{3}{x-4} times \frac{x+y}{x+y}. Multiply \frac{3}{x+y} times \frac{x-4}{x-4}.
\frac{\frac{3\left(x+y\right)+3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Since \frac{3\left(x+y\right)}{\left(x-4\right)\left(x+y\right)} and \frac{3\left(x-4\right)}{\left(x-4\right)\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3x+3y+3x-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Do the multiplications in 3\left(x+y\right)+3\left(x-4\right).
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Combine like terms in 3x+3y+3x-12.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3x}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x\left(x+4\right)-3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{3x^{2}+12x-3x^{2}+12x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x\left(x+4\right)-3x\left(x-4\right).
\frac{\frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)}}{\frac{24x}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x^{2}+12x-3x^{2}+12x.
\frac{\left(6x+3y-12\right)\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+y\right)\times 24x}
Divide \frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)} by \frac{24x}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{6x+3y-12}{\left(x-4\right)\left(x+y\right)} by the reciprocal of \frac{24x}{\left(x-4\right)\left(x+4\right)}.
\frac{\left(x+4\right)\left(6x+3y-12\right)}{24x\left(x+y\right)}
Cancel out x-4 in both numerator and denominator.
\frac{3\left(x+4\right)\left(2x+y-4\right)}{24x\left(x+y\right)}
Factor the expressions that are not already factored.
\frac{\left(x+4\right)\left(2x+y-4\right)}{8x\left(x+y\right)}
Cancel out 3 in both numerator and denominator.
\frac{2x^{2}+xy+4x+4y-16}{8x^{2}+8xy}
Expand the expression.