Evaluate
\frac{1}{4}=0.25
Factor
\frac{1}{2 ^ {2}} = 0.25
Graph
Share
Copied to clipboard
\frac{\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{3\left(x+4\right)+3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3x+12+3x-12}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Do the multiplications in 3\left(x+4\right)+3\left(x-4\right).
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Combine like terms in 3x+12+3x-12.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3x}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x\left(x+4\right)-3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x^{2}+12x-3x^{2}+12x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x\left(x+4\right)-3x\left(x-4\right).
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{24x}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x^{2}+12x-3x^{2}+12x.
\frac{6x\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\times 24x}
Divide \frac{6x}{\left(x-4\right)\left(x+4\right)} by \frac{24x}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{6x}{\left(x-4\right)\left(x+4\right)} by the reciprocal of \frac{24x}{\left(x-4\right)\left(x+4\right)}.
\frac{1}{4}
Cancel out 6x\left(x-4\right)\left(x+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}