Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{3\left(x+4\right)+3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Since \frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3x+12+3x-12}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Do the multiplications in 3\left(x+4\right)+3\left(x-4\right).
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x}{x-4}-\frac{3x}{x+4}}
Combine like terms in 3x+12+3x-12.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x+4 is \left(x-4\right)\left(x+4\right). Multiply \frac{3x}{x-4} times \frac{x+4}{x+4}. Multiply \frac{3x}{x+4} times \frac{x-4}{x-4}.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x\left(x+4\right)-3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}}
Since \frac{3x\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{3x\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{3x^{2}+12x-3x^{2}+12x}{\left(x-4\right)\left(x+4\right)}}
Do the multiplications in 3x\left(x+4\right)-3x\left(x-4\right).
\frac{\frac{6x}{\left(x-4\right)\left(x+4\right)}}{\frac{24x}{\left(x-4\right)\left(x+4\right)}}
Combine like terms in 3x^{2}+12x-3x^{2}+12x.
\frac{6x\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)\times 24x}
Divide \frac{6x}{\left(x-4\right)\left(x+4\right)} by \frac{24x}{\left(x-4\right)\left(x+4\right)} by multiplying \frac{6x}{\left(x-4\right)\left(x+4\right)} by the reciprocal of \frac{24x}{\left(x-4\right)\left(x+4\right)}.
\frac{1}{4}
Cancel out 6x\left(x-4\right)\left(x+4\right) in both numerator and denominator.