Evaluate
\frac{4\left(1-2x\right)\left(x-1\right)}{x^{2}-9}
Expand
-\frac{4\left(2x^{2}-3x+1\right)}{x^{2}-9}
Graph
Share
Copied to clipboard
\frac{\frac{3}{x+1}-\frac{2\left(x+1\right)}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{3-2\left(x+1\right)}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Since \frac{3}{x+1} and \frac{2\left(x+1\right)}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-2x-2}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Do the multiplications in 3-2\left(x+1\right).
\frac{\frac{1-2x}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Combine like terms in 3-2x-2.
\frac{\frac{1-2x}{x+1}}{\frac{1}{4}-\frac{2}{\left(x-1\right)\left(x+1\right)}}
Factor x^{2}-1.
\frac{\frac{1-2x}{x+1}}{\frac{\left(x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}-\frac{2\times 4}{4\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and \left(x-1\right)\left(x+1\right) is 4\left(x-1\right)\left(x+1\right). Multiply \frac{1}{4} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}. Multiply \frac{2}{\left(x-1\right)\left(x+1\right)} times \frac{4}{4}.
\frac{\frac{1-2x}{x+1}}{\frac{\left(x-1\right)\left(x+1\right)-2\times 4}{4\left(x-1\right)\left(x+1\right)}}
Since \frac{\left(x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)} and \frac{2\times 4}{4\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-2x}{x+1}}{\frac{x^{2}+x-x-1-8}{4\left(x-1\right)\left(x+1\right)}}
Do the multiplications in \left(x-1\right)\left(x+1\right)-2\times 4.
\frac{\frac{1-2x}{x+1}}{\frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)}}
Combine like terms in x^{2}+x-x-1-8.
\frac{\left(1-2x\right)\times 4\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-9\right)}
Divide \frac{1-2x}{x+1} by \frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)} by multiplying \frac{1-2x}{x+1} by the reciprocal of \frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)}.
\frac{4\left(x-1\right)\left(-2x+1\right)}{x^{2}-9}
Cancel out x+1 in both numerator and denominator.
\frac{\left(4x-4\right)\left(-2x+1\right)}{x^{2}-9}
Use the distributive property to multiply 4 by x-1.
\frac{-8x^{2}+12x-4}{x^{2}-9}
Use the distributive property to multiply 4x-4 by -2x+1 and combine like terms.
\frac{\frac{3}{x+1}-\frac{2\left(x+1\right)}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{3-2\left(x+1\right)}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Since \frac{3}{x+1} and \frac{2\left(x+1\right)}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-2x-2}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Do the multiplications in 3-2\left(x+1\right).
\frac{\frac{1-2x}{x+1}}{\frac{1}{4}-\frac{2}{x^{2}-1}}
Combine like terms in 3-2x-2.
\frac{\frac{1-2x}{x+1}}{\frac{1}{4}-\frac{2}{\left(x-1\right)\left(x+1\right)}}
Factor x^{2}-1.
\frac{\frac{1-2x}{x+1}}{\frac{\left(x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}-\frac{2\times 4}{4\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and \left(x-1\right)\left(x+1\right) is 4\left(x-1\right)\left(x+1\right). Multiply \frac{1}{4} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}. Multiply \frac{2}{\left(x-1\right)\left(x+1\right)} times \frac{4}{4}.
\frac{\frac{1-2x}{x+1}}{\frac{\left(x-1\right)\left(x+1\right)-2\times 4}{4\left(x-1\right)\left(x+1\right)}}
Since \frac{\left(x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)} and \frac{2\times 4}{4\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-2x}{x+1}}{\frac{x^{2}+x-x-1-8}{4\left(x-1\right)\left(x+1\right)}}
Do the multiplications in \left(x-1\right)\left(x+1\right)-2\times 4.
\frac{\frac{1-2x}{x+1}}{\frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)}}
Combine like terms in x^{2}+x-x-1-8.
\frac{\left(1-2x\right)\times 4\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^{2}-9\right)}
Divide \frac{1-2x}{x+1} by \frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)} by multiplying \frac{1-2x}{x+1} by the reciprocal of \frac{x^{2}-9}{4\left(x-1\right)\left(x+1\right)}.
\frac{4\left(x-1\right)\left(-2x+1\right)}{x^{2}-9}
Cancel out x+1 in both numerator and denominator.
\frac{\left(4x-4\right)\left(-2x+1\right)}{x^{2}-9}
Use the distributive property to multiply 4 by x-1.
\frac{-8x^{2}+12x-4}{x^{2}-9}
Use the distributive property to multiply 4x-4 by -2x+1 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}