Evaluate
-\frac{2x+5}{2\left(2x+1\right)}
Expand
-\frac{2x+5}{2\left(2x+1\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { \frac { 3 } { x + 1 } + 2 } { - 4 + \frac { 2 } { x + 1 } }
Share
Copied to clipboard
\frac{\frac{3}{x+1}+\frac{2\left(x+1\right)}{x+1}}{-4+\frac{2}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{3+2\left(x+1\right)}{x+1}}{-4+\frac{2}{x+1}}
Since \frac{3}{x+1} and \frac{2\left(x+1\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{3+2x+2}{x+1}}{-4+\frac{2}{x+1}}
Do the multiplications in 3+2\left(x+1\right).
\frac{\frac{5+2x}{x+1}}{-4+\frac{2}{x+1}}
Combine like terms in 3+2x+2.
\frac{\frac{5+2x}{x+1}}{-\frac{4\left(x+1\right)}{x+1}+\frac{2}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4 times \frac{x+1}{x+1}.
\frac{\frac{5+2x}{x+1}}{\frac{-4\left(x+1\right)+2}{x+1}}
Since -\frac{4\left(x+1\right)}{x+1} and \frac{2}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{5+2x}{x+1}}{\frac{-4x-4+2}{x+1}}
Do the multiplications in -4\left(x+1\right)+2.
\frac{\frac{5+2x}{x+1}}{\frac{-4x-2}{x+1}}
Combine like terms in -4x-4+2.
\frac{\left(5+2x\right)\left(x+1\right)}{\left(x+1\right)\left(-4x-2\right)}
Divide \frac{5+2x}{x+1} by \frac{-4x-2}{x+1} by multiplying \frac{5+2x}{x+1} by the reciprocal of \frac{-4x-2}{x+1}.
\frac{2x+5}{-4x-2}
Cancel out x+1 in both numerator and denominator.
\frac{\frac{3}{x+1}+\frac{2\left(x+1\right)}{x+1}}{-4+\frac{2}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{3+2\left(x+1\right)}{x+1}}{-4+\frac{2}{x+1}}
Since \frac{3}{x+1} and \frac{2\left(x+1\right)}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{3+2x+2}{x+1}}{-4+\frac{2}{x+1}}
Do the multiplications in 3+2\left(x+1\right).
\frac{\frac{5+2x}{x+1}}{-4+\frac{2}{x+1}}
Combine like terms in 3+2x+2.
\frac{\frac{5+2x}{x+1}}{-\frac{4\left(x+1\right)}{x+1}+\frac{2}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4 times \frac{x+1}{x+1}.
\frac{\frac{5+2x}{x+1}}{\frac{-4\left(x+1\right)+2}{x+1}}
Since -\frac{4\left(x+1\right)}{x+1} and \frac{2}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{5+2x}{x+1}}{\frac{-4x-4+2}{x+1}}
Do the multiplications in -4\left(x+1\right)+2.
\frac{\frac{5+2x}{x+1}}{\frac{-4x-2}{x+1}}
Combine like terms in -4x-4+2.
\frac{\left(5+2x\right)\left(x+1\right)}{\left(x+1\right)\left(-4x-2\right)}
Divide \frac{5+2x}{x+1} by \frac{-4x-2}{x+1} by multiplying \frac{5+2x}{x+1} by the reciprocal of \frac{-4x-2}{x+1}.
\frac{2x+5}{-4x-2}
Cancel out x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}