Evaluate
\frac{3\left(b-2\right)\left(7b+8\right)}{2\left(7b-6\right)\left(b+5\right)}
Expand
\frac{3\left(7b^{2}-6b-16\right)}{2\left(7b-6\right)\left(b+5\right)}
Share
Copied to clipboard
\frac{\frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)}+\frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+5 and 5b-2 is \left(5b-2\right)\left(b+5\right). Multiply \frac{3}{b+5} times \frac{5b-2}{5b-2}. Multiply \frac{6}{5b-2} times \frac{b+5}{b+5}.
\frac{\frac{3\left(5b-2\right)+6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Since \frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)} and \frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15b-6+6b+30}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Do the multiplications in 3\left(5b-2\right)+6\left(b+5\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Combine like terms in 15b-6+6b+30.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)}+\frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-2 and 5b-2 is \left(b-2\right)\left(5b-2\right). Multiply \frac{2}{b-2} times \frac{5b-2}{5b-2}. Multiply \frac{4}{5b-2} times \frac{b-2}{b-2}.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)+4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
Since \frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)} and \frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{10b-4+4b-8}{\left(b-2\right)\left(5b-2\right)}}
Do the multiplications in 2\left(5b-2\right)+4\left(b-2\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{14b-12}{\left(b-2\right)\left(5b-2\right)}}
Combine like terms in 10b-4+4b-8.
\frac{\left(21b+24\right)\left(b-2\right)\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)\left(14b-12\right)}
Divide \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by \frac{14b-12}{\left(b-2\right)\left(5b-2\right)} by multiplying \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by the reciprocal of \frac{14b-12}{\left(b-2\right)\left(5b-2\right)}.
\frac{\left(b-2\right)\left(21b+24\right)}{\left(14b-12\right)\left(b+5\right)}
Cancel out 5b-2 in both numerator and denominator.
\frac{21b^{2}+24b-42b-48}{\left(14b-12\right)\left(b+5\right)}
Apply the distributive property by multiplying each term of b-2 by each term of 21b+24.
\frac{21b^{2}-18b-48}{\left(14b-12\right)\left(b+5\right)}
Combine 24b and -42b to get -18b.
\frac{21b^{2}-18b-48}{14b^{2}+70b-12b-60}
Apply the distributive property by multiplying each term of 14b-12 by each term of b+5.
\frac{21b^{2}-18b-48}{14b^{2}+58b-60}
Combine 70b and -12b to get 58b.
\frac{\frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)}+\frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+5 and 5b-2 is \left(5b-2\right)\left(b+5\right). Multiply \frac{3}{b+5} times \frac{5b-2}{5b-2}. Multiply \frac{6}{5b-2} times \frac{b+5}{b+5}.
\frac{\frac{3\left(5b-2\right)+6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Since \frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)} and \frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15b-6+6b+30}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Do the multiplications in 3\left(5b-2\right)+6\left(b+5\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Combine like terms in 15b-6+6b+30.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)}+\frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-2 and 5b-2 is \left(b-2\right)\left(5b-2\right). Multiply \frac{2}{b-2} times \frac{5b-2}{5b-2}. Multiply \frac{4}{5b-2} times \frac{b-2}{b-2}.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)+4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
Since \frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)} and \frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{10b-4+4b-8}{\left(b-2\right)\left(5b-2\right)}}
Do the multiplications in 2\left(5b-2\right)+4\left(b-2\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{14b-12}{\left(b-2\right)\left(5b-2\right)}}
Combine like terms in 10b-4+4b-8.
\frac{\left(21b+24\right)\left(b-2\right)\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)\left(14b-12\right)}
Divide \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by \frac{14b-12}{\left(b-2\right)\left(5b-2\right)} by multiplying \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by the reciprocal of \frac{14b-12}{\left(b-2\right)\left(5b-2\right)}.
\frac{\left(b-2\right)\left(21b+24\right)}{\left(14b-12\right)\left(b+5\right)}
Cancel out 5b-2 in both numerator and denominator.
\frac{21b^{2}+24b-42b-48}{\left(14b-12\right)\left(b+5\right)}
Apply the distributive property by multiplying each term of b-2 by each term of 21b+24.
\frac{21b^{2}-18b-48}{\left(14b-12\right)\left(b+5\right)}
Combine 24b and -42b to get -18b.
\frac{21b^{2}-18b-48}{14b^{2}+70b-12b-60}
Apply the distributive property by multiplying each term of 14b-12 by each term of b+5.
\frac{21b^{2}-18b-48}{14b^{2}+58b-60}
Combine 70b and -12b to get 58b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}