Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)}+\frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+5 and 5b-2 is \left(5b-2\right)\left(b+5\right). Multiply \frac{3}{b+5} times \frac{5b-2}{5b-2}. Multiply \frac{6}{5b-2} times \frac{b+5}{b+5}.
\frac{\frac{3\left(5b-2\right)+6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Since \frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)} and \frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15b-6+6b+30}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Do the multiplications in 3\left(5b-2\right)+6\left(b+5\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Combine like terms in 15b-6+6b+30.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)}+\frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-2 and 5b-2 is \left(b-2\right)\left(5b-2\right). Multiply \frac{2}{b-2} times \frac{5b-2}{5b-2}. Multiply \frac{4}{5b-2} times \frac{b-2}{b-2}.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)+4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
Since \frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)} and \frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{10b-4+4b-8}{\left(b-2\right)\left(5b-2\right)}}
Do the multiplications in 2\left(5b-2\right)+4\left(b-2\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{14b-12}{\left(b-2\right)\left(5b-2\right)}}
Combine like terms in 10b-4+4b-8.
\frac{\left(21b+24\right)\left(b-2\right)\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)\left(14b-12\right)}
Divide \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by \frac{14b-12}{\left(b-2\right)\left(5b-2\right)} by multiplying \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by the reciprocal of \frac{14b-12}{\left(b-2\right)\left(5b-2\right)}.
\frac{\left(b-2\right)\left(21b+24\right)}{\left(14b-12\right)\left(b+5\right)}
Cancel out 5b-2 in both numerator and denominator.
\frac{21b^{2}+24b-42b-48}{\left(14b-12\right)\left(b+5\right)}
Apply the distributive property by multiplying each term of b-2 by each term of 21b+24.
\frac{21b^{2}-18b-48}{\left(14b-12\right)\left(b+5\right)}
Combine 24b and -42b to get -18b.
\frac{21b^{2}-18b-48}{14b^{2}+70b-12b-60}
Apply the distributive property by multiplying each term of 14b-12 by each term of b+5.
\frac{21b^{2}-18b-48}{14b^{2}+58b-60}
Combine 70b and -12b to get 58b.
\frac{\frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)}+\frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b+5 and 5b-2 is \left(5b-2\right)\left(b+5\right). Multiply \frac{3}{b+5} times \frac{5b-2}{5b-2}. Multiply \frac{6}{5b-2} times \frac{b+5}{b+5}.
\frac{\frac{3\left(5b-2\right)+6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Since \frac{3\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)} and \frac{6\left(b+5\right)}{\left(5b-2\right)\left(b+5\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15b-6+6b+30}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Do the multiplications in 3\left(5b-2\right)+6\left(b+5\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2}{b-2}+\frac{4}{5b-2}}
Combine like terms in 15b-6+6b+30.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)}+\frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-2 and 5b-2 is \left(b-2\right)\left(5b-2\right). Multiply \frac{2}{b-2} times \frac{5b-2}{5b-2}. Multiply \frac{4}{5b-2} times \frac{b-2}{b-2}.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{2\left(5b-2\right)+4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)}}
Since \frac{2\left(5b-2\right)}{\left(b-2\right)\left(5b-2\right)} and \frac{4\left(b-2\right)}{\left(b-2\right)\left(5b-2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{10b-4+4b-8}{\left(b-2\right)\left(5b-2\right)}}
Do the multiplications in 2\left(5b-2\right)+4\left(b-2\right).
\frac{\frac{21b+24}{\left(5b-2\right)\left(b+5\right)}}{\frac{14b-12}{\left(b-2\right)\left(5b-2\right)}}
Combine like terms in 10b-4+4b-8.
\frac{\left(21b+24\right)\left(b-2\right)\left(5b-2\right)}{\left(5b-2\right)\left(b+5\right)\left(14b-12\right)}
Divide \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by \frac{14b-12}{\left(b-2\right)\left(5b-2\right)} by multiplying \frac{21b+24}{\left(5b-2\right)\left(b+5\right)} by the reciprocal of \frac{14b-12}{\left(b-2\right)\left(5b-2\right)}.
\frac{\left(b-2\right)\left(21b+24\right)}{\left(14b-12\right)\left(b+5\right)}
Cancel out 5b-2 in both numerator and denominator.
\frac{21b^{2}+24b-42b-48}{\left(14b-12\right)\left(b+5\right)}
Apply the distributive property by multiplying each term of b-2 by each term of 21b+24.
\frac{21b^{2}-18b-48}{\left(14b-12\right)\left(b+5\right)}
Combine 24b and -42b to get -18b.
\frac{21b^{2}-18b-48}{14b^{2}+70b-12b-60}
Apply the distributive property by multiplying each term of 14b-12 by each term of b+5.
\frac{21b^{2}-18b-48}{14b^{2}+58b-60}
Combine 70b and -12b to get 58b.