Evaluate
\frac{P}{492}
Differentiate w.r.t. P
\frac{1}{492} = 0.0020325203252032522
Share
Copied to clipboard
\frac{\frac{1}{3}P\times 150}{82\times 300}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{150}{3}P}{82\times 300}
Multiply \frac{1}{3} and 150 to get \frac{150}{3}.
\frac{50P}{82\times 300}
Divide 150 by 3 to get 50.
\frac{50P}{24600}
Multiply 82 and 300 to get 24600.
\frac{1}{492}P
Divide 50P by 24600 to get \frac{1}{492}P.
\frac{\mathrm{d}}{\mathrm{d}P}(\frac{\frac{1}{3}P\times 150}{82\times 300})
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}P}(\frac{\frac{150}{3}P}{82\times 300})
Multiply \frac{1}{3} and 150 to get \frac{150}{3}.
\frac{\mathrm{d}}{\mathrm{d}P}(\frac{50P}{82\times 300})
Divide 150 by 3 to get 50.
\frac{\mathrm{d}}{\mathrm{d}P}(\frac{50P}{24600})
Multiply 82 and 300 to get 24600.
\frac{\mathrm{d}}{\mathrm{d}P}(\frac{1}{492}P)
Divide 50P by 24600 to get \frac{1}{492}P.
\frac{1}{492}P^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{492}P^{0}
Subtract 1 from 1.
\frac{1}{492}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{492}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}