Evaluate
\frac{2x-5}{2\left(x-5\right)\left(x-4\right)}
Expand
\frac{2x-5}{2\left(x-5\right)\left(x-4\right)}
Graph
Share
Copied to clipboard
\frac{\frac{3}{4\left(x-4\right)}+\frac{1}{2}}{\frac{x-4}{2}-\frac{1}{2}}
Factor 4x-16.
\frac{\frac{3}{4\left(x-4\right)}+\frac{2\left(x-4\right)}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-4\right) and 2 is 4\left(x-4\right). Multiply \frac{1}{2} times \frac{2\left(x-4\right)}{2\left(x-4\right)}.
\frac{\frac{3+2\left(x-4\right)}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Since \frac{3}{4\left(x-4\right)} and \frac{2\left(x-4\right)}{4\left(x-4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+2x-8}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Do the multiplications in 3+2\left(x-4\right).
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Combine like terms in 3+2x-8.
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-4-1}{2}}
Since \frac{x-4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-5}{2}}
Combine like terms in x-4-1.
\frac{\left(-5+2x\right)\times 2}{4\left(x-4\right)\left(x-5\right)}
Divide \frac{-5+2x}{4\left(x-4\right)} by \frac{x-5}{2} by multiplying \frac{-5+2x}{4\left(x-4\right)} by the reciprocal of \frac{x-5}{2}.
\frac{2x-5}{2\left(x-5\right)\left(x-4\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x-5}{\left(2x-10\right)\left(x-4\right)}
Use the distributive property to multiply 2 by x-5.
\frac{2x-5}{2x^{2}-8x-10x+40}
Apply the distributive property by multiplying each term of 2x-10 by each term of x-4.
\frac{2x-5}{2x^{2}-18x+40}
Combine -8x and -10x to get -18x.
\frac{\frac{3}{4\left(x-4\right)}+\frac{1}{2}}{\frac{x-4}{2}-\frac{1}{2}}
Factor 4x-16.
\frac{\frac{3}{4\left(x-4\right)}+\frac{2\left(x-4\right)}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\left(x-4\right) and 2 is 4\left(x-4\right). Multiply \frac{1}{2} times \frac{2\left(x-4\right)}{2\left(x-4\right)}.
\frac{\frac{3+2\left(x-4\right)}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Since \frac{3}{4\left(x-4\right)} and \frac{2\left(x-4\right)}{4\left(x-4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+2x-8}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Do the multiplications in 3+2\left(x-4\right).
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-4}{2}-\frac{1}{2}}
Combine like terms in 3+2x-8.
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-4-1}{2}}
Since \frac{x-4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-5+2x}{4\left(x-4\right)}}{\frac{x-5}{2}}
Combine like terms in x-4-1.
\frac{\left(-5+2x\right)\times 2}{4\left(x-4\right)\left(x-5\right)}
Divide \frac{-5+2x}{4\left(x-4\right)} by \frac{x-5}{2} by multiplying \frac{-5+2x}{4\left(x-4\right)} by the reciprocal of \frac{x-5}{2}.
\frac{2x-5}{2\left(x-5\right)\left(x-4\right)}
Cancel out 2 in both numerator and denominator.
\frac{2x-5}{\left(2x-10\right)\left(x-4\right)}
Use the distributive property to multiply 2 by x-5.
\frac{2x-5}{2x^{2}-8x-10x+40}
Apply the distributive property by multiplying each term of 2x-10 by each term of x-4.
\frac{2x-5}{2x^{2}-18x+40}
Combine -8x and -10x to get -18x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}