Evaluate
\frac{3}{10}=0.3
Factor
\frac{3}{2 \cdot 5} = 0.3
Share
Copied to clipboard
\frac{\frac{3}{4k}-\frac{2}{4k}}{\frac{1}{3k}+\frac{1}{2k}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4k and 2k is 4k. Multiply \frac{1}{2k} times \frac{2}{2}.
\frac{\frac{1}{4k}}{\frac{1}{3k}+\frac{1}{2k}}
Since \frac{3}{4k} and \frac{2}{4k} have the same denominator, subtract them by subtracting their numerators. Subtract 2 from 3 to get 1.
\frac{\frac{1}{4k}}{\frac{2}{6k}+\frac{3}{6k}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3k and 2k is 6k. Multiply \frac{1}{3k} times \frac{2}{2}. Multiply \frac{1}{2k} times \frac{3}{3}.
\frac{\frac{1}{4k}}{\frac{5}{6k}}
Since \frac{2}{6k} and \frac{3}{6k} have the same denominator, add them by adding their numerators. Add 2 and 3 to get 5.
\frac{6k}{4k\times 5}
Divide \frac{1}{4k} by \frac{5}{6k} by multiplying \frac{1}{4k} by the reciprocal of \frac{5}{6k}.
\frac{3}{2\times 5}
Cancel out 2k in both numerator and denominator.
\frac{3}{10}
Multiply 2 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}