Evaluate
\frac{16}{3}\approx 5.333333333
Factor
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
Share
Copied to clipboard
\frac{\frac{3}{4}\left(1-\frac{12}{1}\times \frac{1}{18}\right)}{\frac{15}{-4}\left(\frac{1}{\frac{1}{1}}\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Divide 1 by 1 to get 1.
\frac{\frac{3}{4}\left(1-\frac{12}{1}\times \frac{1}{18}\right)}{\frac{15}{-4}\left(\frac{1}{1}\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Divide 1 by 1 to get 1.
\frac{\frac{3}{4}\left(1-\frac{12}{1}\times \frac{1}{18}\right)}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Divide 1 by 1 to get 1.
\frac{\frac{3}{4}\left(1-12\times \frac{1}{18}\right)}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Anything divided by one gives itself.
\frac{\frac{3}{4}\left(1-\frac{12}{18}\right)}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Multiply 12 and \frac{1}{18} to get \frac{12}{18}.
\frac{\frac{3}{4}\left(1-\frac{2}{3}\right)}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
\frac{\frac{3}{4}\left(\frac{3}{3}-\frac{2}{3}\right)}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3}{4}\times \frac{3-2}{3}}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{4}\times \frac{1}{3}}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Subtract 2 from 3 to get 1.
\frac{\frac{3\times 1}{4\times 3}}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Multiply \frac{3}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{4}}{\frac{15}{-4}\left(1\times \frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Cancel out 3 in both numerator and denominator.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{16}\right)}
Fraction \frac{15}{-4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(\frac{5}{20}-\frac{4}{20}-\frac{1}{16}\right)}
Least common multiple of 4 and 5 is 20. Convert \frac{1}{4} and \frac{1}{5} to fractions with denominator 20.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(\frac{5-4}{20}-\frac{1}{16}\right)}
Since \frac{5}{20} and \frac{4}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(\frac{1}{20}-\frac{1}{16}\right)}
Subtract 4 from 5 to get 1.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(\frac{4}{80}-\frac{5}{80}\right)}
Least common multiple of 20 and 16 is 80. Convert \frac{1}{20} and \frac{1}{16} to fractions with denominator 80.
\frac{\frac{1}{4}}{-\frac{15}{4}\times \frac{4-5}{80}}
Since \frac{4}{80} and \frac{5}{80} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{4}}{-\frac{15}{4}\left(-\frac{1}{80}\right)}
Subtract 5 from 4 to get -1.
\frac{\frac{1}{4}}{\frac{-15\left(-1\right)}{4\times 80}}
Multiply -\frac{15}{4} times -\frac{1}{80} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{4}}{\frac{15}{320}}
Do the multiplications in the fraction \frac{-15\left(-1\right)}{4\times 80}.
\frac{\frac{1}{4}}{\frac{3}{64}}
Reduce the fraction \frac{15}{320} to lowest terms by extracting and canceling out 5.
\frac{1}{4}\times \frac{64}{3}
Divide \frac{1}{4} by \frac{3}{64} by multiplying \frac{1}{4} by the reciprocal of \frac{3}{64}.
\frac{1\times 64}{4\times 3}
Multiply \frac{1}{4} times \frac{64}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{64}{12}
Do the multiplications in the fraction \frac{1\times 64}{4\times 3}.
\frac{16}{3}
Reduce the fraction \frac{64}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}