Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{3\times 1}{25\times 5}+\frac{\frac{3}{80}}{\frac{5\times 3+4}{3}}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply \frac{3}{25} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{125}+\frac{\frac{3}{80}}{\frac{5\times 3+4}{3}}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Do the multiplications in the fraction \frac{3\times 1}{25\times 5}.
\frac{\frac{3}{125}+\frac{3\times 3}{80\left(5\times 3+4\right)}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Divide \frac{3}{80} by \frac{5\times 3+4}{3} by multiplying \frac{3}{80} by the reciprocal of \frac{5\times 3+4}{3}.
\frac{\frac{3}{125}+\frac{9}{80\left(5\times 3+4\right)}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply 3 and 3 to get 9.
\frac{\frac{3}{125}+\frac{9}{80\left(15+4\right)}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply 5 and 3 to get 15.
\frac{\frac{3}{125}+\frac{9}{80\times 19}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 15 and 4 to get 19.
\frac{\frac{3}{125}+\frac{9}{1520}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply 80 and 19 to get 1520.
\frac{\frac{912}{38000}+\frac{225}{38000}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Least common multiple of 125 and 1520 is 38000. Convert \frac{3}{125} and \frac{9}{1520} to fractions with denominator 38000.
\frac{\frac{912+225}{38000}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Since \frac{912}{38000} and \frac{225}{38000} have the same denominator, add them by adding their numerators.
\frac{\frac{1137}{38000}}{\frac{28+35\times \frac{603+37}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 912 and 225 to get 1137.
\frac{\frac{1137}{38000}}{\frac{28+35\times \frac{640}{16}}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 603 and 37 to get 640.
\frac{\frac{1137}{38000}}{\frac{28+35\times 40}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Divide 640 by 16 to get 40.
\frac{\frac{1137}{38000}}{\frac{28+1400}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply 35 and 40 to get 1400.
\frac{\frac{1137}{38000}}{\frac{1428}{364}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 28 and 1400 to get 1428.
\frac{\frac{1137}{38000}}{\frac{51}{13}}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Reduce the fraction \frac{1428}{364} to lowest terms by extracting and canceling out 28.
\frac{1137}{38000}\times \frac{13}{51}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Divide \frac{1137}{38000} by \frac{51}{13} by multiplying \frac{1137}{38000} by the reciprocal of \frac{51}{13}.
\frac{1137\times 13}{38000\times 51}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply \frac{1137}{38000} times \frac{13}{51} by multiplying numerator times numerator and denominator times denominator.
\frac{14781}{1938000}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Do the multiplications in the fraction \frac{1137\times 13}{38000\times 51}.
\frac{4927}{646000}+\frac{\frac{\frac{3}{25}}{\frac{9}{15}}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Reduce the fraction \frac{14781}{1938000} to lowest terms by extracting and canceling out 3.
\frac{4927}{646000}+\frac{\frac{3\times 15}{25\times 9}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Divide \frac{3}{25} by \frac{9}{15} by multiplying \frac{3}{25} by the reciprocal of \frac{9}{15}.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{3}{84}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Cancel out 3\times 3\times 5 in both numerator and denominator.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{1}{28}\times \frac{5\times 14+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Reduce the fraction \frac{3}{84} to lowest terms by extracting and canceling out 3.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{1}{28}\times \frac{70+4}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply 5 and 14 to get 70.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{1}{28}\times \frac{74}{14}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 70 and 4 to get 74.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{1}{28}\times \frac{37}{7}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Reduce the fraction \frac{74}{14} to lowest terms by extracting and canceling out 2.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{1\times 37}{28\times 7}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Multiply \frac{1}{28} times \frac{37}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{4927}{646000}+\frac{\frac{1}{5}+\frac{37}{196}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Do the multiplications in the fraction \frac{1\times 37}{28\times 7}.
\frac{4927}{646000}+\frac{\frac{196}{980}+\frac{185}{980}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Least common multiple of 5 and 196 is 980. Convert \frac{1}{5} and \frac{37}{196} to fractions with denominator 980.
\frac{4927}{646000}+\frac{\frac{196+185}{980}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Since \frac{196}{980} and \frac{185}{980} have the same denominator, add them by adding their numerators.
\frac{4927}{646000}+\frac{\frac{381}{980}}{\frac{\frac{2}{7}}{7}|-49|}\times \frac{3}{2}
Add 196 and 185 to get 381.
\frac{4927}{646000}+\frac{\frac{381}{980}}{\frac{2}{7\times 7}|-49|}\times \frac{3}{2}
Express \frac{\frac{2}{7}}{7} as a single fraction.
\frac{4927}{646000}+\frac{\frac{381}{980}}{\frac{2}{49}|-49|}\times \frac{3}{2}
Multiply 7 and 7 to get 49.
\frac{4927}{646000}+\frac{\frac{381}{980}}{\frac{2}{49}\times 49}\times \frac{3}{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -49 is 49.
\frac{4927}{646000}+\frac{\frac{381}{980}}{2}\times \frac{3}{2}
Cancel out 49 and 49.
\frac{4927}{646000}+\frac{381}{980\times 2}\times \frac{3}{2}
Express \frac{\frac{381}{980}}{2} as a single fraction.
\frac{4927}{646000}+\frac{381}{1960}\times \frac{3}{2}
Multiply 980 and 2 to get 1960.
\frac{4927}{646000}+\frac{381\times 3}{1960\times 2}
Multiply \frac{381}{1960} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4927}{646000}+\frac{1143}{3920}
Do the multiplications in the fraction \frac{381\times 3}{1960\times 2}.
\frac{241423}{31654000}+\frac{9229725}{31654000}
Least common multiple of 646000 and 3920 is 31654000. Convert \frac{4927}{646000} and \frac{1143}{3920} to fractions with denominator 31654000.
\frac{241423+9229725}{31654000}
Since \frac{241423}{31654000} and \frac{9229725}{31654000} have the same denominator, add them by adding their numerators.
\frac{9471148}{31654000}
Add 241423 and 9229725 to get 9471148.
\frac{2367787}{7913500}
Reduce the fraction \frac{9471148}{31654000} to lowest terms by extracting and canceling out 4.