Evaluate
-\frac{85}{63}\approx -1.349206349
Factor
-\frac{85}{63} = -1\frac{22}{63} = -1.3492063492063493
Share
Copied to clipboard
\frac{\frac{9}{6}-\frac{8}{6}+\frac{5}{4}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{\frac{9-8}{6}+\frac{5}{4}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Since \frac{9}{6} and \frac{8}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{6}+\frac{5}{4}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Subtract 8 from 9 to get 1.
\frac{\frac{2}{12}+\frac{15}{12}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{5}{4} to fractions with denominator 12.
\frac{\frac{2+15}{12}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Since \frac{2}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{12}}{\frac{\frac{3}{5}}{\frac{-4}{7}}}
Add 2 and 15 to get 17.
\frac{\frac{17}{12}}{\frac{3\times 7}{5\left(-4\right)}}
Divide \frac{3}{5} by \frac{-4}{7} by multiplying \frac{3}{5} by the reciprocal of \frac{-4}{7}.
\frac{\frac{17}{12}}{\frac{21}{5\left(-4\right)}}
Multiply 3 and 7 to get 21.
\frac{\frac{17}{12}}{\frac{21}{-20}}
Multiply 5 and -4 to get -20.
\frac{\frac{17}{12}}{-\frac{21}{20}}
Fraction \frac{21}{-20} can be rewritten as -\frac{21}{20} by extracting the negative sign.
\frac{17}{12}\left(-\frac{20}{21}\right)
Divide \frac{17}{12} by -\frac{21}{20} by multiplying \frac{17}{12} by the reciprocal of -\frac{21}{20}.
\frac{17\left(-20\right)}{12\times 21}
Multiply \frac{17}{12} times -\frac{20}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{-340}{252}
Do the multiplications in the fraction \frac{17\left(-20\right)}{12\times 21}.
-\frac{85}{63}
Reduce the fraction \frac{-340}{252} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}