Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Rationalize the denominator of \frac{3}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{4-3}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{\frac{3\left(2-\sqrt{3}\right)}{1}-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Subtract 3 from 4 to get 1.
\frac{3\left(2-\sqrt{3}\right)-\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}}
Anything divided by one gives itself.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}{2-5\sqrt{3}}
Rationalize the denominator of \frac{2}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}}{2-5\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{4-3}}{2-5\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{3\left(2-\sqrt{3}\right)-\frac{2\left(2+\sqrt{3}\right)}{1}}{2-5\sqrt{3}}
Subtract 3 from 4 to get 1.
\frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}}
Anything divided by one gives itself.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}
Rationalize the denominator of \frac{3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)}{2-5\sqrt{3}} by multiplying numerator and denominator by 2+5\sqrt{3}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{2^{2}-\left(-5\sqrt{3}\right)^{2}}
Consider \left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-\left(-5\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-5\sqrt{3}\right)^{2}.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\left(\sqrt{3}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-25\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{4-75}
Multiply 25 and 3 to get 75.
\frac{\left(3\left(2-\sqrt{3}\right)-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Subtract 75 from 4 to get -71.
\frac{\left(6-3\sqrt{3}-2\left(2+\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Use the distributive property to multiply 3 by 2-\sqrt{3}.
\frac{\left(6-3\sqrt{3}-\left(4+2\sqrt{3}\right)\right)\left(2+5\sqrt{3}\right)}{-71}
Use the distributive property to multiply 2 by 2+\sqrt{3}.
\frac{\left(6-3\sqrt{3}-4-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
To find the opposite of 4+2\sqrt{3}, find the opposite of each term.
\frac{\left(2-3\sqrt{3}-2\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
Subtract 4 from 6 to get 2.
\frac{\left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right)}{-71}
Combine -3\sqrt{3} and -2\sqrt{3} to get -5\sqrt{3}.
\frac{2^{2}-\left(5\sqrt{3}\right)^{2}}{-71}
Consider \left(2-5\sqrt{3}\right)\left(2+5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4-\left(5\sqrt{3}\right)^{2}}{-71}
Calculate 2 to the power of 2 and get 4.
\frac{4-5^{2}\left(\sqrt{3}\right)^{2}}{-71}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{4-25\left(\sqrt{3}\right)^{2}}{-71}
Calculate 5 to the power of 2 and get 25.
\frac{4-25\times 3}{-71}
The square of \sqrt{3} is 3.
\frac{4-75}{-71}
Multiply 25 and 3 to get 75.
\frac{-71}{-71}
Subtract 75 from 4 to get -71.
1
Divide -71 by -71 to get 1.