Evaluate
\frac{775}{348}\approx 2.227011494
Factor
\frac{5 ^ {2} \cdot 31}{2 ^ {2} \cdot 3 \cdot 29} = 2\frac{79}{348} = 2.2270114942528734
Share
Copied to clipboard
\frac{\frac{3}{11}\left(\frac{2}{19}\times \frac{38}{3}\times \frac{2}{3}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Divide \frac{2}{19} by \frac{3}{38} by multiplying \frac{2}{19} by the reciprocal of \frac{3}{38}.
\frac{\frac{3}{11}\left(\frac{2\times 38}{19\times 3}\times \frac{2}{3}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Multiply \frac{2}{19} times \frac{38}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{11}\left(\frac{76}{57}\times \frac{2}{3}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Do the multiplications in the fraction \frac{2\times 38}{19\times 3}.
\frac{\frac{3}{11}\left(\frac{4}{3}\times \frac{2}{3}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Reduce the fraction \frac{76}{57} to lowest terms by extracting and canceling out 19.
\frac{\frac{3}{11}\left(\frac{4\times 2}{3\times 3}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Multiply \frac{4}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{\frac{3}{38}}{\frac{2}{19}}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Do the multiplications in the fraction \frac{4\times 2}{3\times 3}.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{3}{38}\times \frac{19}{2}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Divide \frac{3}{38} by \frac{2}{19} by multiplying \frac{3}{38} by the reciprocal of \frac{2}{19}.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{3\times 19}{38\times 2}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Multiply \frac{3}{38} times \frac{19}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{57}{76}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Do the multiplications in the fraction \frac{3\times 19}{38\times 2}.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{3}{4}\times \frac{2}{3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Reduce the fraction \frac{57}{76} to lowest terms by extracting and canceling out 19.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{3\times 2}{4\times 3}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{2}{4}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Cancel out 3 in both numerator and denominator.
\frac{\frac{3}{11}\left(\frac{8}{9}+\frac{1}{2}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{11}\left(\frac{16}{18}+\frac{9}{18}\right)}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Least common multiple of 9 and 2 is 18. Convert \frac{8}{9} and \frac{1}{2} to fractions with denominator 18.
\frac{\frac{3}{11}\times \frac{16+9}{18}}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Since \frac{16}{18} and \frac{9}{18} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{11}\times \frac{25}{18}}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Add 16 and 9 to get 25.
\frac{\frac{3\times 25}{11\times 18}}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Multiply \frac{3}{11} times \frac{25}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{75}{198}}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Do the multiplications in the fraction \frac{3\times 25}{11\times 18}.
\frac{\frac{25}{66}}{\frac{\frac{1}{3}+\frac{3}{11}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Reduce the fraction \frac{75}{198} to lowest terms by extracting and canceling out 3.
\frac{\frac{25}{66}}{\frac{\frac{11}{33}+\frac{9}{33}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Least common multiple of 3 and 11 is 33. Convert \frac{1}{3} and \frac{3}{11} to fractions with denominator 33.
\frac{\frac{25}{66}}{\frac{\frac{11+9}{33}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Since \frac{11}{33} and \frac{9}{33} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{66}}{\frac{\frac{20}{33}}{\frac{3\times 3+1}{3}}}\times \frac{31}{29}
Add 11 and 9 to get 20.
\frac{\frac{25}{66}}{\frac{\frac{20}{33}}{\frac{9+1}{3}}}\times \frac{31}{29}
Multiply 3 and 3 to get 9.
\frac{\frac{25}{66}}{\frac{\frac{20}{33}}{\frac{10}{3}}}\times \frac{31}{29}
Add 9 and 1 to get 10.
\frac{\frac{25}{66}}{\frac{20}{33}\times \frac{3}{10}}\times \frac{31}{29}
Divide \frac{20}{33} by \frac{10}{3} by multiplying \frac{20}{33} by the reciprocal of \frac{10}{3}.
\frac{\frac{25}{66}}{\frac{20\times 3}{33\times 10}}\times \frac{31}{29}
Multiply \frac{20}{33} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{25}{66}}{\frac{60}{330}}\times \frac{31}{29}
Do the multiplications in the fraction \frac{20\times 3}{33\times 10}.
\frac{\frac{25}{66}}{\frac{2}{11}}\times \frac{31}{29}
Reduce the fraction \frac{60}{330} to lowest terms by extracting and canceling out 30.
\frac{25}{66}\times \frac{11}{2}\times \frac{31}{29}
Divide \frac{25}{66} by \frac{2}{11} by multiplying \frac{25}{66} by the reciprocal of \frac{2}{11}.
\frac{25\times 11}{66\times 2}\times \frac{31}{29}
Multiply \frac{25}{66} times \frac{11}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{275}{132}\times \frac{31}{29}
Do the multiplications in the fraction \frac{25\times 11}{66\times 2}.
\frac{25}{12}\times \frac{31}{29}
Reduce the fraction \frac{275}{132} to lowest terms by extracting and canceling out 11.
\frac{25\times 31}{12\times 29}
Multiply \frac{25}{12} times \frac{31}{29} by multiplying numerator times numerator and denominator times denominator.
\frac{775}{348}
Do the multiplications in the fraction \frac{25\times 31}{12\times 29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}