Evaluate
-\frac{1}{6}\approx -0.166666667
Factor
-\frac{1}{6} = -0.16666666666666666
Share
Copied to clipboard
\frac{\frac{3}{10}-\frac{2+1}{2}\times \frac{1}{6}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Multiply 1 and 2 to get 2.
\frac{\frac{3}{10}-\frac{3}{2}\times \frac{1}{6}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Add 2 and 1 to get 3.
\frac{\frac{3}{10}-\frac{3\times 1}{2\times 6}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Multiply \frac{3}{2} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{10}-\frac{3}{12}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Do the multiplications in the fraction \frac{3\times 1}{2\times 6}.
\frac{\frac{3}{10}-\frac{1}{4}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{\frac{6}{20}-\frac{5}{20}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Least common multiple of 10 and 4 is 20. Convert \frac{3}{10} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{6-5}{20}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Since \frac{6}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{20}}{\frac{\frac{2}{5}}{-\frac{1\times 3+1}{3}}}
Subtract 5 from 6 to get 1.
\frac{\frac{1}{20}}{\frac{\frac{2}{5}}{-\frac{3+1}{3}}}
Multiply 1 and 3 to get 3.
\frac{\frac{1}{20}}{\frac{\frac{2}{5}}{-\frac{4}{3}}}
Add 3 and 1 to get 4.
\frac{\frac{1}{20}}{\frac{2}{5}\left(-\frac{3}{4}\right)}
Divide \frac{2}{5} by -\frac{4}{3} by multiplying \frac{2}{5} by the reciprocal of -\frac{4}{3}.
\frac{\frac{1}{20}}{\frac{2\left(-3\right)}{5\times 4}}
Multiply \frac{2}{5} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{20}}{\frac{-6}{20}}
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 4}.
\frac{\frac{1}{20}}{-\frac{3}{10}}
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
\frac{1}{20}\left(-\frac{10}{3}\right)
Divide \frac{1}{20} by -\frac{3}{10} by multiplying \frac{1}{20} by the reciprocal of -\frac{3}{10}.
\frac{1\left(-10\right)}{20\times 3}
Multiply \frac{1}{20} times -\frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-10}{60}
Do the multiplications in the fraction \frac{1\left(-10\right)}{20\times 3}.
-\frac{1}{6}
Reduce the fraction \frac{-10}{60} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}