Solve for x
x=\frac{99}{920}\approx 0.107608696
Graph
Share
Copied to clipboard
\frac{3}{10}=24x\times \frac{\frac{2}{5}}{\frac{396}{115}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 24x.
\frac{3}{10}=24x\times \frac{2}{5}\times \frac{115}{396}
Divide \frac{2}{5} by \frac{396}{115} by multiplying \frac{2}{5} by the reciprocal of \frac{396}{115}.
\frac{3}{10}=24x\times \frac{23}{198}
Multiply \frac{2}{5} and \frac{115}{396} to get \frac{23}{198}.
\frac{3}{10}=\frac{92}{33}x
Multiply 24 and \frac{23}{198} to get \frac{92}{33}.
\frac{92}{33}x=\frac{3}{10}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{10}\times \frac{33}{92}
Multiply both sides by \frac{33}{92}, the reciprocal of \frac{92}{33}.
x=\frac{99}{920}
Multiply \frac{3}{10} and \frac{33}{92} to get \frac{99}{920}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}