Evaluate
\frac{53}{5}=10.6
Factor
\frac{53}{5} = 10\frac{3}{5} = 10.6
Share
Copied to clipboard
\frac{\frac{3}{4}\times 6+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Divide \frac{3}{4} by \frac{1}{6} by multiplying \frac{3}{4} by the reciprocal of \frac{1}{6}.
\frac{\frac{3\times 6}{4}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Express \frac{3}{4}\times 6 as a single fraction.
\frac{\frac{18}{4}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Multiply 3 and 6 to get 18.
\frac{\frac{9}{2}+\frac{\frac{5^{2}}{3}}{\frac{1}{12}}}{6+8-\frac{1}{4}}+3
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{9}{2}+\frac{5^{2}\times 12}{3}}{6+8-\frac{1}{4}}+3
Divide \frac{5^{2}}{3} by \frac{1}{12} by multiplying \frac{5^{2}}{3} by the reciprocal of \frac{1}{12}.
\frac{\frac{9}{2}+\frac{25\times 12}{3}}{6+8-\frac{1}{4}}+3
Calculate 5 to the power of 2 and get 25.
\frac{\frac{9}{2}+\frac{300}{3}}{6+8-\frac{1}{4}}+3
Multiply 25 and 12 to get 300.
\frac{\frac{9}{2}+100}{6+8-\frac{1}{4}}+3
Divide 300 by 3 to get 100.
\frac{\frac{9}{2}+\frac{200}{2}}{6+8-\frac{1}{4}}+3
Convert 100 to fraction \frac{200}{2}.
\frac{\frac{9+200}{2}}{6+8-\frac{1}{4}}+3
Since \frac{9}{2} and \frac{200}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{209}{2}}{6+8-\frac{1}{4}}+3
Add 9 and 200 to get 209.
\frac{\frac{209}{2}}{14-\frac{1}{4}}+3
Add 6 and 8 to get 14.
\frac{\frac{209}{2}}{\frac{56}{4}-\frac{1}{4}}+3
Convert 14 to fraction \frac{56}{4}.
\frac{\frac{209}{2}}{\frac{56-1}{4}}+3
Since \frac{56}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{209}{2}}{\frac{55}{4}}+3
Subtract 1 from 56 to get 55.
\frac{209}{2}\times \frac{4}{55}+3
Divide \frac{209}{2} by \frac{55}{4} by multiplying \frac{209}{2} by the reciprocal of \frac{55}{4}.
\frac{209\times 4}{2\times 55}+3
Multiply \frac{209}{2} times \frac{4}{55} by multiplying numerator times numerator and denominator times denominator.
\frac{836}{110}+3
Do the multiplications in the fraction \frac{209\times 4}{2\times 55}.
\frac{38}{5}+3
Reduce the fraction \frac{836}{110} to lowest terms by extracting and canceling out 22.
\frac{38}{5}+\frac{15}{5}
Convert 3 to fraction \frac{15}{5}.
\frac{38+15}{5}
Since \frac{38}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
\frac{53}{5}
Add 38 and 15 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}