Solve for n
n = \frac{115}{51} = 2\frac{13}{51} \approx 2.254901961
Share
Copied to clipboard
\frac{23}{4}=n\times \frac{\frac{17}{2}}{\frac{10}{3}}
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
\frac{23}{4}=n\times \frac{17}{2}\times \frac{3}{10}
Divide \frac{17}{2} by \frac{10}{3} by multiplying \frac{17}{2} by the reciprocal of \frac{10}{3}.
\frac{23}{4}=n\times \frac{17\times 3}{2\times 10}
Multiply \frac{17}{2} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{23}{4}=n\times \frac{51}{20}
Do the multiplications in the fraction \frac{17\times 3}{2\times 10}.
n\times \frac{51}{20}=\frac{23}{4}
Swap sides so that all variable terms are on the left hand side.
n=\frac{23}{4}\times \frac{20}{51}
Multiply both sides by \frac{20}{51}, the reciprocal of \frac{51}{20}.
n=\frac{23\times 20}{4\times 51}
Multiply \frac{23}{4} times \frac{20}{51} by multiplying numerator times numerator and denominator times denominator.
n=\frac{460}{204}
Do the multiplications in the fraction \frac{23\times 20}{4\times 51}.
n=\frac{115}{51}
Reduce the fraction \frac{460}{204} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}